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Progenitor and collapse

I Progenitor: a massive star (& 8M�) after exhaustion of nuclear
full (onion-shell structure)

I gravitational collapse of the core to a proto neutron star: ρmax

increases from ∼ 109 g/cm3 to > ρnuc ∼ 2× 1014 g/cm3 within ∼
a free-fall time

I ecore ∼ 1053 erg relased, mostly in neutrinos
I collapse stops when nuclear density is reached
⇒ formation of a shock wave

I the shock propagates outwards, but stalls due to energy loss in
dissociation reactions

¿ How is the stalled shock wave revived?
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Ingredients

multi-scale problem
I star: blue or red giant
I pre-collapse core: few 1000 km
I PNS: few 10 km
I stalled shock: few 100 km
I large (magnetic) Reynolds

number
I many dynamical time scales

multi-physics problem
I multi-dimensional (GR)(M)HD
I turbulence
I nuclear equation of state
I neutrino transport (from

optically thick to transparent),
neutrino-matter interactions

I nuclear burning
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Exlosion mechanisms

How is the failed explosion revived?

Not a matter of energy (ecore � eenv), but
of energy transfer.

I Spherical neutrino-driven
explosion

I Standard model: neutrino
heating aided by
hydrodynamic instabilities

I Energy transfer by waves
I rotational mechanisms

5 / 12



Core-collapse supernovae Hydromagetic instabilities Summary

Exlosion mechanisms

How is the failed explosion revived?

Not a matter of energy (ecore � eenv), but
of energy transfer.
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explosion
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I rotational mechanisms

Neutrino mechanism
I Neutrinos diffuse out of the PNS
I they heat the matter behind the

shock.
⇒ explosions for cores in a limited

mass range (Kitaura et al., 2006)
I compatible with standard

pre-collapse evolution
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Exlosion mechanisms

How is the failed explosion revived?

Not a matter of energy (ecore � eenv), but
of energy transfer.

I Spherical neutrino-driven
explosion

I Standard model: neutrino
heating aided by
hydrodynamic instabilities

I Energy transfer by waves
I rotational mechanisms

Hydro instabilities
I Neutrino heating
I convection and standing accretion

shock instability (Blondin et al.,
2003, 2006; Foglizzo et al., 2007)

⇒ successful for M ≈ 11...15M�
I compatible with standard

pre-collapse evolution
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Exlosion mechanisms

How is the failed explosion revived?

Not a matter of energy (ecore � eenv), but
of energy transfer.

I Spherical neutrino-driven
explosion

I Standard model: neutrino
heating aided by
hydrodynamic instabilities

I Energy transfer by waves
I rotational mechanisms

Waves
I accoustic (Burrows et al., 2006,

2007) or Alfvén waves (Suzuki et
al., 2008) generated at the PNS

I waves dissipate near the shock
I successful?
I compatible with standard

pre-collapse evolution?
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Exlosion mechanisms

How is the failed explosion revived?

Not a matter of energy (ecore � eenv), but
of energy transfer.
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I Spherical neutrino-driven
explosion

I Standard model: neutrino
heating aided by
hydrodynamic instabilities

I Energy transfer by waves
I rotational mechanisms

Rotation
I tap into erot by magnetic fields

(Thompson et al., 2004)
I successful?
I realistic?
→ MRI? (Akiyama et al., 2003)
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The rationale for studying instabilities

I magnetic fields need to be strong to have
an effect on SNe

I But: stellar evolution theory predicts rather
weak fields in the pre-collapse core

→ efficient amplification required
I compression
I linear winding by differential rotation
I hydromagnetic instabilities: convection,

magnetorotational instability (MRI), SASI

Meier et al., 1976
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Instabilities: an overview

SASI convection MRI
energy accretion flow thermal diff. rotation
mechanism advective-

acoustic cycle
buoyant trans-
port of ener-
gy/species

magnetic trans-
port of angular
momentum

role of ~b passive; turbu-
lent dynamo

passive; turbu-
lent dynamo

instability driver;
turbulent dynamo

Endeve et al., 2008 8 / 12
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MRI: Questions

I physical issues
I instability regimes unique to stellar environment
I complex dependence of the turbulent saturated state on the initial

conditions (huge parameter space)
I interplay with supernova dynamics

I technical issues
I resolution requirements: δx ∼ 1...100 cm to resolve the fastest

growing mode
I eliminate (or at least identify) the influence of numerical resistivity

and viscosity
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MRI: preliminary results

I instability
regimes

I saturation
I large-scale

dynamics

theoretical analysis of the dispersion relation of MHD
modes in a differentially rotating fluid with or without
thermal stratification

I growth rates of the MRI: few ms possible
I (de)stabilisation by thermal stratification:

overlap with convection
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MRI: preliminary results

I instability
regimes

I saturation
I large-scale

dynamics

1 local simulations of simplified models
2 confirm linear analysis:

√

3 identify mechanism of MRI saturation: uncertain
4 scaling relations for the turbulent state: unclear

I ideal MHD
I simplified EOS
I no neutrinos
I shearing-disk boundary conditions
I high resolution
I 2d and 3d
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MRI: preliminary results

I instability
regimes

I saturation
I large-scale

dynamics

1 local simulations of simplified models
2 confirm linear analysis:

√

3 identify mechanism of MRI saturation: uncertain
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MRI: preliminary results

I instability
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MRI: preliminary results

I instability
regimes

I saturation
I large-scale

dynamics

1 local simulations of simplified models
2 confirm linear analysis:

√

3 identify mechanism of MRI saturation: uncertain
4 scaling relations for the turbulent state: unclear

How strong is the field? What about topology and
correlation between components?
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MRI: preliminary results

I instability
regimes

I saturation
I large-scale

dynamics

global simulations of cores in rotational equilibrium
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avoid artificial boundary conditions
MRI present, but modified w.r.t. box models
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MRI: preliminary results

I instability
regimes

I saturation
I large-scale

dynamics

1 global simulations of magneto-rotational
collapse

2 artifically enhanced initial field
3 varying degrees of sophistication for the

microphysics
4 follow dynamics of magneto-rotational

explosions

Cerdá-Durán et al., 2009
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Summary

I Three instabilities potentially leading to field amplification: SASI,
convection, MRI

I studied MRI and magneto-convection by analysis of the
dispersion relation and simulations

I different approaches are required to understand the
MRI/convection:

I box simulations
I global simulations with simplified physics
I global simulations with the best possible treatment of physics

I MRI may grow in rapidly rotating cores
I field strength ∼ 1015 G achievable
I saturation mechanism still not understood
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