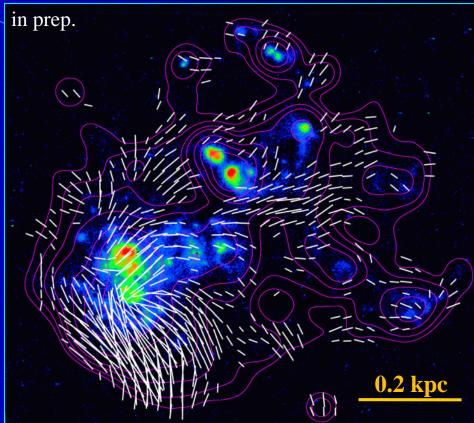

Do dwarf galaxies magnetize the Universe?

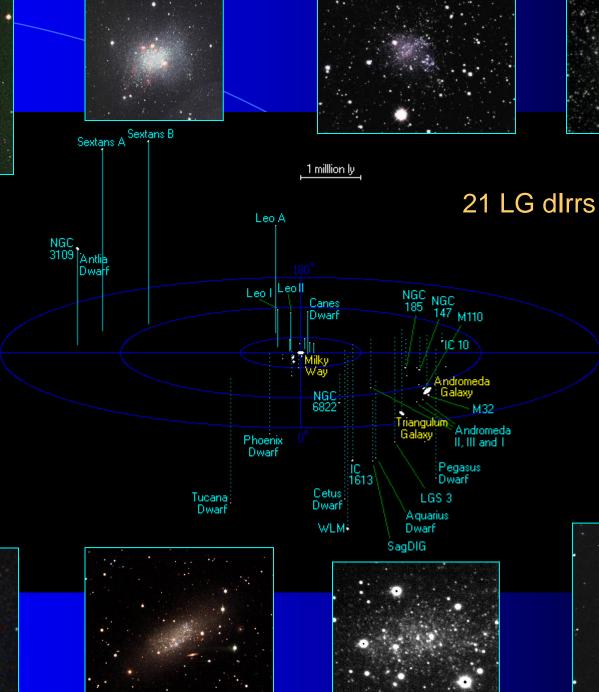

Krzysztof T. Chyży (Jagiellonian University, Kraków)

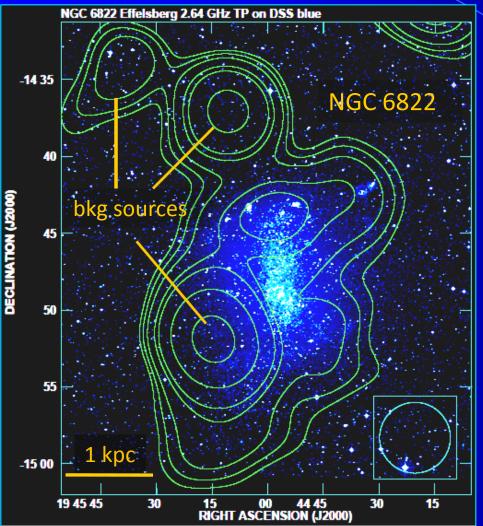
In collaboration with:

Rainer Beck Dominik Bomans Marek Weżgowiec

NGC 4449 and IC 10

- 5x smaller, 8x less massive than the Milky Way, no spiral arms, slow rotation (30-50 km/s)
- But B=12µG (regular 8µG)! Efficient large-scale dynamo?


- 10x less massive than NGC 4449, local BCG
- $B=10\mu G$, small-scale dynamo?



Radio Detections

۲

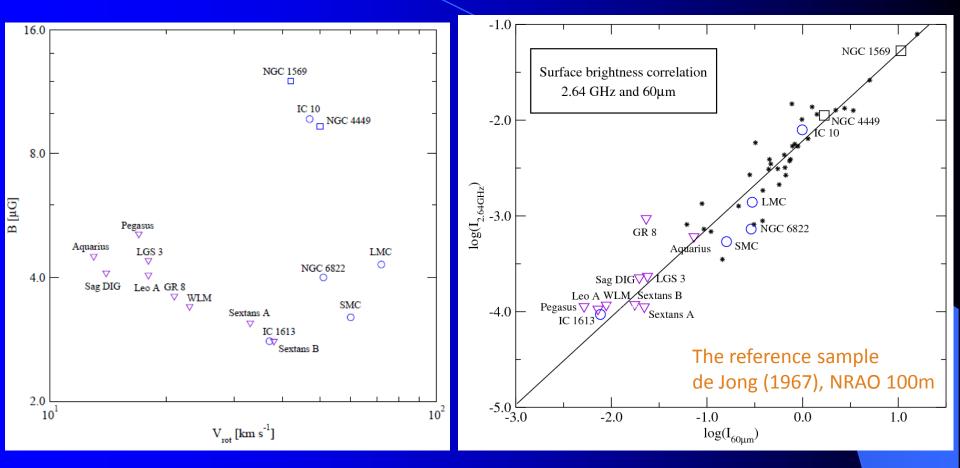
Mateo (1998), Salvadori & Ferrara (2009)

S	Irr	dwarfs					
		dIrr	dE	dSph	UF dSph		
3	7	14	2	15	~20		

21 dlrrs 12 attainable from Effelsberg

 3 out of 12 dlrrs are radio detected at 2.64 GHz (IC 10, NGC 6822, IC1613)

Undetected: their upper radio flux limits are still important


B-SFR

- Mean B \leq 4µG (10µG IC10 exceptionally strong)
- B depends primarly on ΣSFR or Σρ (NGC 4254 exponent 0.26±0.01)
- B correlates also with global SFR, mass, metallicity

B – rotation

Radio – Infrared

- No correlation
- Rather small-scale dynamo?

- Low-mass dwarf galaxies follow a trend determined for high surface brightness spirals
- Synchrotron deficiency could occur

Could dirrs magnetize the Universe?

Туре	Pri dSph	Pri dIrr	LBG	LBG	
	instantaneous star formation				
SF Mass	1.0e6	1.0e7	1.0e8	1.0e9	
Redshift z	8	7	5	3	
Wind energy E_b [erg]	2.0e55	2.0e56	2.0e57	2.0e58	
SF size R_0 [kpc]	0.5	1.0	2.0	3.0	
Stall radius R_s [kpc]	15	36	103	333	
B_0 [G]	1.0e-7	1.0e-6	1.0e-5	5.0e-5	
B_s [G]	1.1e-10	7.8e-10	3.8e-9	4.1e-9	
Туре	Local Group dIrrs				
	continuous SF				
SFR	0.00001	0.0003	0.01	0.1	
Redshift z	0	0	0	0	
Wind energy E_b [erg]	3.0e50	1.5e52	3.0e53	3.0e54	
SF size R_0 [kpc]	0.05	0.2	0.4	0.7	
Stall radius R_s [kpc]	0.2	0.9	2.3	5.0	
B_0 [G]	5.0e-7	1.0e-6	3.0e-6	8.0e-6	
B_s [G]	2.3e-8	5.5e-8	8.8e-8	1.5e-7	

- LBG Verma et al. 2007, Samui 2008
- Pri dSph Strigari 2008, Ricotti 2010

If magnetization coeval with its metal enrichment then more massive (LBG) galaxies can efficiently magnetize the IGM

 Typical LG dIrrs could magnetize only the local space

 $R_0/2 \Rightarrow B/4$; $E_b^*2 \Rightarrow R_s^*1.25 B/1.6$; Z=0.02 $\Rightarrow E_b^*1.2 R_s^*1.07 B/1.15$; $\epsilon^*10 \Rightarrow R_s^*2 B/4.8$

LOFAR and SKA will detect the remaining LG dwarfs

www.lofar.org

Conclusions

Some dwarfs

 Show very strong (NGC 1569, IC10) and even spiral B (NGC 4449)

Unbiased sample of LG Dwarfs

- 25% are radio detected (mean B≤4µG).
- B depends primarly on ΣSFR, not on dwarf's rotation
- follow radio-infrared relation
- Strong mean magnetic fields (>5µG) are observed only in the most massive dwarfs, extreme in star-formation
- Not suitable objects for efficient magnetization of the IGM

Kraków, 17.05'2010, OAUJ