Numerical modeling of relativistic magnetic reconnection: Kinetic, two-fluid, and MHD simulations

Seiji ZENITANI

National Astronomical Observatory of Japan

Ackn: M. Hoshino (U. Tokyo), M. Hesse, A. Klimas, M. Kuznetsova (NASA/GSFC), T. Miyoshi (Hiroshima U)

Outline

- 0. Introduction
- 1. Kinetic modeling
 - 2D reconnection
- 2. Fluid modeling
 - RRMHD & two-fluid simulations
 - New insight: high-speed fluid dynamics
- 3. Cross-code comparison
- 4. Summary

Magnetic reconnection

Earth's Magnetosphere

- Re-configuration of magnetic topology
- Release of magnetic energy to plasma energy
- Violation of the ideal condition is necessary

 $\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B} \neq 0$

Magnetic reconnection in high-energy settings

- Magnetically dominated settings
- Special relativity
 - + radiation, pair creation ...

Jet model

Current status of relativistic reconnection research (2015Q2) Theories have been discussed over two decades Many works came out after the Crab flare (2011) MHD theories Kinetic (PIC) simulations Blackman & Field 1994 MHD Lyutikov & Uzdensky 2003 Zenitani & Hoshino simulations Two-fluid 2001-2008 Lyubarsky 2005 simulations Jaroschek+ 2004-2009 Watanabe & Tenbarge+ 2010 Yokoyama 2006 Liu+ 2011 Zenitani+ 2010, 11 Cerutti+ 2012-2014 Zenitani+ 2009 Zanotti & Dumbser Kagan+ 2013 Comisso & Asenjo 2014 2011 Sironi & Spitkovsky 2014 Takahashi+ 2011 Melzani+ 2014 Takamoto 2013 Guo+ 2014-2015 (Zenitani+ 2015) Zenitani in prep. Fast evolution Basic properties are Ideal for global Meso-scale under debate modeling evolution Particle acceleration

1. Kinetic modeling

2D Particle-In-Cell (PIC) simulation

- Fast reconnection and particle acceleration occurs
- Online version: http://th.nao.ac.jp/MEMBER/zenitani/files/reconnection.mov

DC particle acceleration

Hard-energy spectra

Guo+ 2014

3D reconnection: Onset problem

Zenitani & Hoshino 2008

3D large-scale evolution: RX appears to win

2. Fluid modeling

Relativistic Petschek (PK) reconnection

• Relativistic resistive MHD (RRMHD) eqs. (Watanabe & Yokoyama 2006, Komissarov 2007)

$$(\rho U^{\mu})_{,\mu} = 0, \quad (T^{\mu\nu}_{\text{gas}} + T^{\mu\nu}_{\text{em}})_{,\mu} = 0$$
$$F^{\mu\nu}_{,\mu} = -J^{\nu}, \quad F^{*\mu\nu}_{,\mu} = 0$$
$$F^{\mu\nu}u_{\nu} = \eta \left(J^{\mu} + (J^{\nu}u_{\nu})u^{\mu}\right)$$

• Alternative: relativistic two-fluid eqs. (Zenitani+ 2009a,b, Barkov+ 2014)

Relativistic PK reconnection - Alfvénic outflow

• Magnetization parameter

$$\sigma_{\varepsilon} = \frac{B_0^2}{4\pi\gamma^2 w} \left(\approx \frac{8}{5} \frac{\mathcal{E}_{EM}}{\mathcal{E}_{fluid}}\right)$$

Relativistic Alfvén speed

$$\gamma_{jet} v_{jet} \approx \gamma_A c_A = \sqrt{\sigma_{\varepsilon}}$$

Relativistic PK reconnection - a paradox

- Narrower opening angle (Lyubarsky 2005)
- Speed is limited by Alfvén speed

Semi-relativistic (sigma=0.4)

Reconnection rate (flux transfer speed) goes high

Relativistic Sweet-Parker reconnection

High-speed fluid effects (1/3): Adiabatic acceleration

Compressible effects (3/3): Shock diamond

Shock diamonds in an extragalactic jet

2x10⁶ light years

PKS 0637-752 Godfrey+ 2012

Shock diamonds in aeronautics

BBC online http://www.bbc.com/future/story/20130701-flying-the-worlds-fastest-plane

Shock diamonds in video game

Microsoft Flight Simulator X https://www.youtube.com/watch?v=S8QGaiE4yWc

Some more shock-diamonds

Structure of a reconnection-plasmoid system

- High-speed effects were also missing in nonrelativistic reconnection industry
- They result in complex shock structure in a low-β plasma

 $\beta = \frac{2}{\Gamma} \left(\frac{c_s}{c_A}\right)^2 \sim \left(\frac{c_s}{V}\right)^2 = \mathcal{M}^{-2}$

Zenitani & Miyoshi 2011 Zenitani 2015a

3. Cross-code comparison

Preliminan

Relativistic kinetic Ohm's law

- MHD simulation relines on pre-defined Ohm's law
- What about self-consistent PIC results?
- Stress-energy tensor

Kinetic Ohm's law (cont.)

• Normalized energy dissipation (~ j.E/n ~ $\eta j^2/n$)

 ${\mathcal X}$

• Ohm's law: relativistic heat flow term appears

PIC vs Two-fluid vs RRMHD - energy throughput

Summary

- Kinetic modeling
 - Reconnection features DC particle acceleration
 - 3D evolution a kink instability
 - Now it is a field of active research!!
- RRMHD, Two-fluid modeling
 - Straightforward extension of nonrelativistic MHD reconnection
 - Narrower exhaust, faster reconnection rate, heat-dominated flow
 - High-speed fluid effects adiabatic acc., shocks, shock diamonds
- Cross-code comparison
 - Heat flow appears in the Ohm's law and dominates in the energy budget (due to accelerated particles)