

Relativistic Reconnection Driven

Giant Flares of SGRs Cong Yu(余聪) Yunnan Observatories

Collaborators : Lei Huang Zhoujian

Cao

Outline Relevant Background Catastrophic Behavior of Flux rope

Flux Rope ---Helically Twisted Magnetic Structure Double Helix DNA

Reconnection Driven Giant Flares Conclusion

What is Magnetar ?

Magnetic+Star => Magnetar

Energy source : magnetic field persistent emission & sporadic burst Artists' Imagination

Ultra-strongly magnetic field due to the dynamo amplification Duncan & Thompson, 1992, ApJ Thompson & Duncan, 1995, MNR

Basic Facts about Magnetars

- Slow Rotation : typically 5 12 s
- Fast spin-down rate : 10⁻¹¹ s s⁻¹ (cf. 10⁻¹⁵ s s⁻¹)
- Young objects: 1000 10000 yrs
 Typical spin-down power: 10³²⁻³³ ergs/s
- Persistent emission: 10³⁵⁻³⁶ergs/s, 0.5-10 Kev
 Short Bursts: 0.01-1s, 10⁴¹⁻⁴²ergs/s,

Main manifestations of Neutron Stars:

(Radio) Pulsars Powered by rotational energy

 Accreting X-ray binaries -Powered by gravitational energy

Magnetars do not fit in these two

Persistent luminosity 10-100 times higher than spin down power -> rotational energy ruled out

- $\left|\frac{\partial}{\partial t}\int\frac{B^2}{8\pi}\,dV\right|\gg\left|I_{\rm ns}\Omega_{\rm ns}\dot{\Omega}_{\rm ns}\right|$
- Recurrent flares reach 10⁴¹ erg/s ~ 1000 L_{Edd} , giant flares 10⁴⁴ erg/s ~ 10⁶ L_{Edd}
 - -> accretion energy ruled out

How Strong Magnetic Field is in Magnetars ?

energy

 $\sim 10^7$ G (for a few microsecond)

Giant Flares

1979 March 5 - SGR 0526-66 L $_{peak}$ ~ 4 x 10⁴⁴ erg/s E_{TOT} ~ 5 x 10⁴⁴ erg

1998 August 27 - SGR 1900+14 L $_{peak}$ > 8 x 10⁴⁴ erg/s E_{TOT} > 3 x 10⁴⁴ erg

2004 December 27 - SGR 1806-20 L $_{peak}$ ~ 2-5 x 10⁴⁷ erg/s E_{TOT} ~ 2-5 x 10⁴⁶ erg

Giant Flares

2.500

400

Initial spike: $\Delta t \sim 0.3 \text{ s}$, $E_{iso} \sim a$ few1044-46 erg .05×10 Bin time: hard spectrum ~ ms rise time 10^{5} The 2004 Dec. 27 Pulsating tail Count/sec 9.5×10^{4} giant flare from SGR Lasts a few min 1806-20 9×10^{4} Modulated at t "Home and the second and the second HALW WHITH WALK 802×104 NS rotation per 200 0 Softer spectrur Time (s)

Energy Release Mechanisms Physical processes by which the energy is released remains one of the great puzzles in magnetars. **Two different models :** I. Crust Model

II. Magnetosphere Model

Crust Model

Sudden Crust Brittle Fracture, similar to

rong magnetic fields luce stress on the crust.

upt untwisting of the erior magnetic field leads udden crust fracture

escale ~ Shear Alfven wa escale ~ 0.2 second

Crust Thompson & Duncan (2000)

Magnetosphere Model

Note: Sudden magnetosphere rearrangement due to gradual changes occur at Alfeencrassing timescale divertifie ~ ms rise time of giant flares, this model seems to be more consistent with

Lyutikov, 2006, MNRAS

o Servations, However, no quantitative constraint has been placed on the relativistic reconnection rate based on real observations.

Part II Flux Rope Eruption Model

Cartoon for Giant Flares (Flux Rope Model)

Crust motion leads to the formation of helically twisted flux

Views in another

Little Complication: Current Sheet

Central Object : Neutron Star

> **Electric current** inside flux rope : I Surface Magnetic \bigcirc Field : Major Radius : h Minor Radius : r_0 Current sheet : r_1 , r_2

Yu & Huang, 2013, ApJ Letter

Inhomogeneous Grad-Shafranov (GS) Eqn

Flux function
$$\Psi(r,\theta)$$
 $\rho_e \mathbf{E}$

$$\rho_e \mathbf{E} + \frac{1}{c} \mathbf{j} \times \mathbf{B} = 0$$

$$\frac{\partial^2 \Psi}{\partial r^2} + \frac{\sin \theta}{r^2} \frac{\partial}{\partial \theta} \left(\frac{1}{\sin \theta} \frac{\partial \Psi}{\partial \theta} \right) = -(r \sin \theta) \frac{4\pi}{c} J_{\phi}$$

Inhomogeneous term : contribution from currents in the helically twisted flux r

$$J_{\phi} = \frac{I}{h} \,\,\delta(\cos\theta)\delta(r-h)$$

We numerically solve this GS equation.

Equilibrium Constraints

Force Equilibrium Condition :

Total Force = 0 (on the flux rope)

Flux Frozen Condition :

$$\Psi\left(h-r_0,\frac{\pi}{2}\right) = \text{cosnt}$$

h : major radius of the flux rope r_o : minor radius of the flux rope

Catastrophic Transition

Huang & Yu, 2014a, ApJ Huang & Yu, 2014b, ApJ

Catastrophic behaviors naturally explain a puzzle associated with magnetospheric model :

gradual variations (quasi-static timescale)

hreaderilibringy beases PRAYnalffittar timescales) table, unstable, and stable

f. S curves in accretion disc in C

Part III

However ...

Take energy dissipation, i.e., magnetic reconnection into account !

We need a time-dependent model !

Time-Dependent Relativistic Models

Key parameter $M_A = |v_{\theta}/v_a|$

Yu & Huang, In prep.

Some Results

Yu & Huang, In prep.

Effects of Reconnection

Reconnection Rate

Spin-down rate during Giant Flare

Yu & Huang, In prep.

Conclusion

- We developed a self-consistent model which can constrain the relativistic reconnection according to the actual observations about magnetars.
- Reconnection may not be that rapid, Mach number ~ 0.001 is already enough to explain the observations.
- Spin-down behavior is consistent with magetar's observations
- Important implication for solar CMEs, such as flareless CMEs

Thank you !