Minimum e Lorentz factor and matter content of jet in blazars

Qingwen Wu

Huazhong University of Science and Technology, China

Collaborators: S.-J. Kang & L. Chen

1. Why minimum electron Lorentz factor ?

Crucial for jet power estimation and constraint on jet matter content!

$$P_{\rm jet} \propto \gamma_{\rm min}^{1-p}$$

$$N_e \propto \gamma_e^{-p}$$

Jet kinetic power Inhomogeneous jet model:

$$L_{\rm kin} = \frac{4}{3} \pi r_1^2 n_1 \gamma_{\rm e,min}^{-\frac{3}{2}} [1 - \cos(1/\Gamma)] (m_{\rm e} \langle \gamma_{\rm e} \rangle + m_{\rm p} \langle \gamma_{\rm p} \rangle) \Gamma(\Gamma - 1) \beta c^3$$

$$\theta_{\rm d} = \frac{r(\tau_{\nu_{\rm s}} = 1)\sin\theta}{D_{\rm a}}$$

VLBI core size, proper motion, X-ray (SSC) and with a assumed minimum electron Lorentz factor

MHD simulations on jet efficiency, e.g., Tchekhovskoy, Narayan ... (2012)

Constrain minimum electron **Lorentz factor from**

24.

 Sample: 30 Low-Synchrotron-Peaked(LSP) blazars (FSRQs) with (quasi-)simultaneous observations (Fermi, Swift, Plank & ground based radio, optical, infrared telescopes).

X-rays of LSP blazars are mainly

• Model: one-zone leptonic model

$$N(\gamma) = \begin{cases} N_0 \gamma^{-p_1} & \gamma_{\min} \leqslant \gamma \leqslant \gamma_b \\ N_0 \gamma_b^{p_2 - p_1} \gamma^{-p_2} & \gamma_b < \gamma \leqslant \gamma_{\max} \end{cases}$$

IC: SSC + EC

Seed photons for EC?

Jet dissipation region & seed photon field

Possibilities: (1) R < R_{BLR} (2) R_{BLR}< R< R_{torus}

(3) $\mathbf{R} > \mathbf{R}_{torus}$

Jet dissipation region & seed photon field

Indirect test?

Origin of seed photon field may provide a test on the gamma-ray location

• Model: one-zone leptonic model

BLR and torus seed photons are considered in IC respectively.

$$u_{\rm BLR} \sim f_{\rm BLR} L_{\rm d} / (4\pi c R_{\rm BLR}^2)$$

$$u_{\mathrm{IR}} \sim f_{\mathrm{IR}} L_{\mathrm{d}} / (4\pi c R_{\mathrm{IR}}^2)$$

• Model: one-zone leptonic model

Model parameters:

$$R, B, \delta, p_1, p_2, \gamma_{\min}, \gamma_{\max}, \gamma_b, \text{ and } N_0$$
$$R = c\delta\Delta t_{\text{var}}/(1+z) \quad \gamma_{\max} = 100\gamma_b$$

7 free parameters

Fitting method: χ^2 -minimization procedure

Fitting results

Fit the data from submm to Gamma-ray (e.g., > 300GHz)

Giroletti's talk: optically thin at >~86 GHz

Doppler factor & Doppler factor

Seed photon field

Klein-Nishina effect?

$$v_{\rm EC,BLR}^T \lesssim 6 \times 10^{23} \, {\rm Hz}$$

 $v_{\rm EC,torus}^T \lesssim 4 \times 10^{25} \, {\rm Hz}$

It suggests that IR seed photons are preferred and R_{BLR} < R_{dissi} < R_{torus}.

• UBLR, UIR as a free parameten up or p2 fixed)

IR seed photons are preferred?

R_{BLR} < R_{dissi} < R_{torus}

Minimum electron Lorentz factor

Ymin ~ several tens, which is not sensitive to seed photon field (SSC!).

 $\gamma_{\min} = [(p-2)/(p-1)](m_p/m_e)\varepsilon_e\Delta\Gamma$

Sari et al. 1998

Jet power & matter content

$$P_i = \pi R^2 \Gamma^2 c U_i'$$

One electron one proton, jet power of blazars is systematically larger than

that of FR IIs at given 151 MHz radio luminosity.

The jet power will decrease if positrons exist!

Jet power & matter content

Assume
$$n_p = \eta n_{e^-}$$
, $n_{e^+} = (1 - \eta) n_{e^-}$ and

SED modeling with IR seed photon is better than that of BLR, which suggest that gamma-ray emitting region may locate outside of BLR.

Most of jet energy is dissipated at 10⁵Rg?

M87 Asada et al. 2014 & Nakamura's talk

- SED modeling with IR seed photon is better than that of BLR, which suggest that gamma-ray emitting region may locate outside of BLR.
- Minimum electron Lorentz factors are
 ~ several tens in FSRQs.

- SED modeling with IR seed photon is better than that of BLR, which suggest that gamma-ray emitting region may locate outside of BLR.
- Minimum electron Lorentz factors are
 ~ several tens in FSRQs.

Mixed composition of e+-e--p in FSRQs.

- SED modeling with IR seed photon is better than that of BLR, which suggest that gamma-ray emitting region may locate outside of BLR.
- Minimum electron Lorentz factors are
 ~ several tens in FSRQs.

Mixed composition of e+-e--p in FSRQs.

Thanks for your

2.5 Gamma-ray emitting region and jet composition in blazars

Multi-band SED normally can be modeled by one-zone model (size R~D*c*t_{min}, t_{min}~1 day).

• Possibilities: (1) $R < R_{BLR}$ (2) $R_{BLR} < R < R_{torus}$ (3) $R > R_{torus}$

Different locations will lead to different IC seed photons.

SED modeling results

Figure 1. χ^2 values derived from multiwavelength SED fittings with the IR seed photons of the torus are plotted against the fittings with BLR seed photons. The dashed line represents y = x.

$$\chi^2_{IR} < \chi^2_{BLR}$$

Support the IR soft photons -> located at R>~R_{BLR}

Blazar jet include positrons?

Median value is 0.08, average value is 0.22 $n_{e^+}/n_p \sim 100$ electron-positron dominated!

Kang, Chen & Wu* 2014,

MHD Jet efficiency

Energy Flux								
Model	a/M	$E_{\rm hole}^m$	$E_{\rm hole}^{\rm em}$	$E_{\rm jet}^m$	η_m	$E_{\rm jet}^{\rm em}$	$\eta_{\rm em}$	$\eta_{\rm NT}$
KDR	-0.90	-20.8	0.41	2.71	0.088	0.509	0.023	0.039
KD0c	0.00	-20.6	-0.02	0.16	0.0022	0.007	3.1×10^{-4}	0.057
KDIb	0.50	-21.7	0.10	2.06	0.063	0.129	0.0063	0.081
KDPg	0.90	-21.8	0.88	5.89	0.22	0.892	0.046	0.155
KDG	0.93	-19.8	1.37	3.13	0.065	0.824	0.038	0.173
KDH	0.95	-16.9	2.79	4.26	0.13	1.46	0.072	0.190
KDJ	0.99	-9.9	6.86	9.94	0.41	3.28	0.21	0.264

Hawley & Krolik 2006

Minimum electron Lorentz factor >> 1 ?

But see Tchekhovskoy, Narayan ... $\eta \approx 140$ per cent

for a*~0 99