

In Inhomogeneous Jet Model for the Broad. Band Emission of Radio Loud AGNs in the Two_flow paradigm

Thomas Vuillaume, with Gilles Henri & Pierre-Olivier Petrucci,* IPAG, Université Grenoble Alpes, CNRS, France Extragalactic Jets, Kraków, 04/2015

*thomas.vuillaume@obs.ujf-grenoble.fr

Open issues in AGNs

- Jet composition ⇔ Jet power (Celotti & Ghisellini ++)
- Discrepancies in Γ_b
 (Bulk Lorentz Factor Crisis, Henri & Saugé 06)
- Acceleration and confinement of a highly relativistic flow

(Blandford's talk)

- Link with BH spins
- Absence of Compton bump (Sikora)

The two_flow paradigm

The Big Picture

Numerical Modeling of the emission

Advantages

An example of SED

Conclusion

The two-flow picture

*H. Sol, G. Pelletier, E. Asséo, 1989

The two_flow picture

✗ MHD jet or wind

- Fuelled by accretion disk
- Baryon loaded
- Midly relativistic (≈0.5c)
- Carries most of the power

*H. Sol, G. Pelletier, E. Asséo, 1989

The two_flow picture

✗ MHD jet or wind

- Fuelled by accretion disk
- Baryon loaded
- Midly relativistic (≈0.5c)
- Carries most of the power

★ Inner Jet

- Pairs e⁻/e⁺ (NO baryons here)
- Highly relativistic (Γ≈10)
- Responsible for most of the non-thermal emission

*H. Sol, G. Pelletier, E. Asséo, 1989

The two_flow picture

*H. Sol, G. Pelletier, E. Asséo, 1989

✗ MHD jet or wind

- Fuelled by accretion disk
- Baryon loaded
- Midly relativistic (≈0.5c)
- Carries most of the power

★ Inner Jet

- Pairs e⁻/e⁺ (NO baryons here)
- Highly relativistic (Γ≈10)
- Responsible for most of the non-thermal emission
- ★ Pairs get energy through the two flows interaction (2nd order Fermi process)

Acceleration of the inner jet

Hot pairs emitting γ-rays along the jet

Acceleration of the inner jet

Acceleration of the inner jet

Hot pairs emitting γ-rays along the jet

Radiation dominates the dynamic of hot pairs!

Anisotropic photon field

Compton Rocket

*(O'Dell 81, Phinney 82)

---- External photon

External photonInverse Compton photon

---- External photon ---- Inverse Compton photon

Cooling compensated by continuous re-acceleration (≠ Phinney 82)

Energy source = MHD turbulence NOT external photon field Compton Rocket

External photon
Inverse Compton photon

Compton Rocket with an accretion disc

Compton Rocket with an accretion disc

Compton Rocket in a complex photon field...

 \Rightarrow more complex behavior of Γ_{eq}

The two_flow paradigm

The Big Picture

Numerical Modeling of the emission Advantages

An example of SED

Conclusion

Model advantages

 Many problems disappear or seem easier to overcome in this paradigm:
 ✓ Discrepancy in bulk speeds => natural explanation

Jet composition and power => e⁻/e⁺ at high Γ and e⁻/p
 + midly relativistic carrying the power

 ✓ Only hot particles move at relativistic bulk motion = no Sikora bump

Compton drag/rocket not an issue but a solution to the acceleration to relativistic speed issue

✓ Not necessarily BZ process => link with BH spin

The two_flow paradigm

The Big Picture

Numerical Modeling Of the emission

Advantages

An example of SED

Modeling: stratified jet

✗ Diffuse acceleration => diffuse emission

★ 1 zone modeling => continuous emission = stratified jet

Modeling: stratified jet

computed !

Modeling: particle distribution

⊀ Pile-up:

Result from stochastic acceleration processes

$$n_e(\gamma, Z) = N_e(Z) \frac{\gamma^2}{2\bar{\gamma}^3(Z)} \exp\left(-\frac{\gamma}{\bar{\gamma}(Z)}\right)$$

Modeling: particle distribution

 $n_e(\gamma, Z) = N_e(Z) \frac{\gamma^2}{2\bar{\gamma}^3(Z)}$

⊀ Pile-up:

Result from stochastic acceleration processes

Computed parameters!

 \exp

Result from pair-production & *annihilation* *Result from balance between cooling and heating*

Modeling: particle distribution

∦ *Pile-up:*

$$n_e(\gamma, Z) = N_e(Z) \frac{\gamma^2}{2\bar{\gamma}^3(Z)} \exp\left(-\frac{\gamma}{\bar{\gamma}(Z)}\right)$$

Can appear as a power-law by convolution...

Complete modeling

- Computation of radiative processes
 Synchrotron
 - Synchrotron Self-Compton
 - External Compton (disc, dusty torus, BLR)
- ✗ Pair production and annihilation, absorption
- Anisotropy of the sources and emission
- *X* Compton Rocket

The two_flow paradigm

The Big Picture

Numerical Modeling of the emission

Advantages

An example of SED

 $Z < 1e3 R_s$

 $1e3 R_{s} < Z < 1e5 R_{s}$

 $1e5 R_s < Z < 1e7 R_s$

 $1e7 R_s < Z < 1e9 R_s$

Total integrated emission

The two_flow paradigm

The Big Picture

Numerical Modeling of the emission

Advantages

An example of SED

Conclusion

The two_flow: summary

Coherent paradigm – not mainstream but with a lot of explanatory potential

- Important current issues easier to explain
- Self-consistent computation of physical parameters and emission
- Γ NOT free imposed by external sources (through Compton Rocket effect)
- *Future: time dependent version of the model*