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3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)
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where C · F denotes CiFi, and the angular momentum equation as
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where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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General	  condi<ons	  of	  magnetosphere	

•  Kerr	  space<me	  with	  
arbitrary	  spin	  parameter	  
(fixed)	  

•  Steady	  &	  axisymmetric	  
•  Poloidal	  B	  field	  (with	  
arbitrary	  shape)	  threading	  
the	  ergosphere	  

•  Plasma	  with	  sufficient	  
number	  density	  

D ·B = 0

E ·B = 0

E

Bp
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3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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If	  E=0,	  Hφ=αBφ=0	  (No	  ang.	  mom.	  or	  Poyn<ng	  flux)	  along	  a	  field	  line,	

D = � 1

↵
� ⇥Bp D2 > B2

for ↵2 < �2

(in	  the	  ergosphere)	

Then	  the	  force-‐free	  is	  violated,	  and	  the	  strong	  D	  field	  drives	  Jp	  
across	  Bp	  (Hφ	  ≠	  0),	  weakening	  D	  (E	  ≠	  0).	

The	  origin	  of	  the	  electromo<ve	  force	  is	  ascribed	  to	  the	  ergosphere.	

(KT	  &	  Takahara	  2014,	  MNRAS;	  see	  also	  Komissarov	  2004;	  2009)	



Field	  lines	  threading	  equatorial	  plane	

H' = 0

E

Sp

(KT	  &	  Takahara	  2014,	  MNRAS;	  
KT	  &	  Takahara	  2015	  in	  prep.)	

•  From	  the	  symmetry	  

•  D2 > B2 possible	  around	  
there,	  crea<ng	  AM	  flux	  
(Hφ)	  &	  Poyn<ng	  flux	

H' = 0

on	  the	  equatorial	  plane	

•  For	  D2 ~ B2,	  par<cles	  are	  strongly	  accelerated	  
in	  direc<on	  of	  –φ,	  obtaining	  nega<ve	  energies	

Jp

D
r · Sp = �E · Jp

r · Lp = �(Jp ⇥Bp) ·m



Field	  lines	  threading	  the	  horizon	

E

Sp

(KT	  &	  Takahara	  2015	  in	  prep.)	

Jp

•  From	  the	  regularity	  condi<on	  

•  No	  par<cles	  with	  nega<ve	  
energies	  

•  Nega<ve	  EM	  energy	  e ?	  
(Komissarov	  2009;	  Koide	  &	  Baba	  
2014)	  But	  we	  found	  e>0	  in	  the	  
KS	  coordinates	  

•  Different	  from	  Penrose	  
process	  

•  Then	  how	  is	  the	  steady	  Sp	  
created	  ?	  

H' 6= 0, D2 < B2

on	  the	  event	  horizon	



Process	  toward	  steady	  state	
We	  try	  to	  understand	  this	  process	  with	  a	  toy	  model	

Unpublished	  yet	



Implica<ons	  from	  the	  toy	  model	

Unpublished	  yet	



Summary	
•  Origin	  of	  E	  and	  Jp	  in	  pulsar	  wind	  is	  stellar	  rota<on	  
•  In	  the	  BZ	  process:	  
–  Origin	  of	  E	  is	  ascribed	  to	  the	  ergosphere	  
–  Around	  equatorial	  plane,	  Jp	  is	  driven	  by	  D2 > B2,	  crea<ng	  
ε<0	  par<cles	  (appear	  same	  as	  Penrose	  process)	  

–  Around	  horizon,	  FF/MHD	  is	  sa<sfied	  in	  steady	  state	  (not	  
appear	  same	  as	  Penrose	  process)	  

–  Our	  toy	  model	  implies	  that	  the	  boundary	  of	  force-‐free	  
plasma	  and	  vacuum	  propaga<ng	  inside	  has	  cross	  field	  
current	  and	  displacement	  current	  flow,	  crea<ng	  (or	  
regula<ng)	  Hφ,	  Sp	  and	  Lp	  

(The	  presented	  analysis	  will	  be	  submi[ed	  soon.	  KT	  &	  Takahara	  in	  prep.	  2015)	


