Blazars, radio galaxies, and radio lobes studied in X-rays with Suzaku, MAXI, and future Astro-H

Yasuyuki T.Tanaka Hiroshima University

Outline

- Suzaku X-ray satellite and recent results
 - ✓ Fermi/LAT-detected radio galaxies
 - ✓ Thermal X-ray emission from radio lobes
- MAXI (all-sky X-ray monitor on ISS) and recent results
- Future Astro-H perspectives:
 - ✓ Soft gamma-ray polarimetry for bright blazars
 - ✓ Study "disk-jet-wind" connection using Ultra-high resolution (~7 eV) and wide-band spectroscopic capability (0.3-600 keV)

Suzaku X-ray satellite

Launched on 2005 July 10, Low Earth Orbit (~550 km)

XIS: CCD, 0.3-10 keV (3 CCDs are now working)

HXD: PIN and GSO

(cover 10-500 keV band)

XRS: micro-calorimeter (Helium is lost before science observation)

- Wide-band (0.3-500 keV) simultaneous spectroscopy with XIS+HXD
- XIS has larger effective area at E>~5 keV, suitable to study Fluorescence Fe K line at 6.4 keV
- Low and steady background of XIS, suitable to observe low surface-brightness spatially-extended emissions such as outskirts of galaxy clusters and thermal/nonthermal emission from radio lobes

AGN jets and Blazars

Unified model of AGN

• Sync+IC emissions by high-E electrons

Viewing angles for radio galaxies are larger than blazars, hence jet emission is not enhanced like blazars

Cen A, NGC 1275, M87, NGC 6251, 3C 111, 3C 120, 3C 78, PKS 0625-354

- PKS 0625-354 and 3C 78 are not well studied in X-ray band
- Disk/corona or jet origin?
- PL index, variability, and EW of Fe K-line are useful to reveal the X-ray origin

0.45-8 keV light curve and spectrum

XISI (BI), XISO (FI), XIS3 (FI)

- No significant rapid flux change
- Small (~10%) flux variation in dayscale for PKS 0625, while no significant change for 3C 78

 Fluorescence Fe-K lines are common features in Seyferts (dominated by disk emission), but no sign of fluorescence Fe-K lines (EW<7 and 75 eV for PKS 0625 and 3C 78)

Fukazawa, YTT, 2014

Fe K-line EW vs hard X-ray luminosity for seyfert galaxies and radio galaxies

- Some RGs (e.g. Cen A and 3C 120) locate at the same region as Seyfert, suggesting disk/corona origin for Xrays
- Strong ULs for M87, PKS 0625, and 3C 78 indicate that X-rays are jet origin, rather than Seyfert-like disk/ corona origin

Source	$\frac{N_{\rm H}}{(10^{20}~{ m cm}^{-2})}$	kT (keV)	Z (Z_{\odot})	$L_{0.5-10 \text{keV}}$ (10 ⁴² erg s ⁻¹)	Γ_X	$L_{2-10 \text{keV}}$ (10 ⁴² erg s ⁻¹)	EW (eV)	χ^2/dof
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
M87	10 ± 6 (1.9)	1.79 ± 0.02 2.28 ± 0.03	1.4 ± 0.8 1.4 ± 0.2	13	2.42 ± 0.03	0.7	<13	674/572
PKS 0625-354	9 ± 1 (6.36)	0.24 ± 0.02	0.3 ^(f)	9.6	2.25 ± 0.02	49	<7	640/486
3C78	$14 \pm 2 (9.51)$	0.29 ± 0.04	0.3 ^(f)	1.0	2.32 ± 0.04	2.0	<75	572/567
		1.07 ± 0.06	0.3 ^(f)					
NGC 6251					$1.82^{+0.04}_{-0.05}$	2.86	<66	
3C111					1.65 ± 0.02	259	40 ± 9	
3C 120					$1.75^{+0.03}_{-0.02}$	100	50 ± 10	
NGC 1275					1.73 ± 0.03	7.7	75 ± 7	
Cen A					1.73 ± 0.03	10	76 ± 3	

Fukazawa,YTT, 2014

One-zone Sync+SSC modeling

- X-ray emission, found to be dominated by jet emission, is included in SED modeling
 - Bulk Lorentz factor and beaming factor are ~5, comparable to other LATdetected RGs, and lower than BL Lac objects

		50	Differentiation	curs of fundio (Juluares			
	PKS 06	25-354	30	278	Cen A	M87	NGC 1275	NGC 6251
Г	5.8	5.7	2.93	5.75	7.0	2.3	1.8	2.4
δ	5.8	5.8	2.92	5.75	1.0	3.9	2.5	2.4
θ (deg)	10	19	20	20	30	10	25	25
<i>B</i> (G)	0.82	0.11	0.77	0.02	6.2	0.055	0.05	0.04
t_v (Ms)	0.1	1	0.1	1	0.1	1.2	30	1.7
$R_b \ (10^{16} \ {\rm cm})$	1.6	16	0.85	17	0.3	1.4	200	12
p ₁	2.5	2.5	2.7	2.7	1.8	1.6	2.1	2.75
p_2	3.5	3.5	3.7	3.7	4.3	3.6	3.1	4.0
γmin	6×10^{3}	6×10^{3}	1×10^{3}	1×10^{4}	3×10^{2}	1	8×10^{2}	250
γmax	2×10^{6}	6×10^{6}	2×10^{7}	2×10^{7}	1×10^{8}	1×10^{7}	4×10^{5}	4.4×10^{5}
Ybrk	2.9×10^{4}	4.6×10^{4}	7.3×10^{4}	1.4×10^{5}	8×10^2	4×10^{3}	9.6×10^{2}	2.0×10^{4}
$P_{i,B} (10^{42} \text{ erg s}^{-1})$	43	740	0.3	2.5	65	0.02	230	0.4
$P_{j,e} (10^{42} \text{ erg s}^{-1})$	2	10	0.6	13	31	7	120	160

Table 5				
SED Model Parameters of Radio Galaxies				

Variable X-ray emission from NGC 1275

- Perseus cluster center is one of calibration targets for Suzaku and the central galaxy NGC 1275 is always located at the CCD center
- 40 ks exposure every half an year (Feb. and Aug.)

Extended non-thermal hard X-ray emission

ASCA 2-10 keV image with VLA contour (Kaneda+95)

Radio-emitting relativistic electrons inside the lobe can produce IC X-rays by upscattering CMB photons

 IC X-rays from radio lobes were detected from many sources by Chandra/XMM/Suzaku, and Ue/Um=1-100 is found (e.g., Croston+05, Konar+10, Isobe+11)

Fermi-LAT resolved giant gamma-ray lobe

10¹¹

10¹⁰

10⁷

 10^{10}

10¹³

10¹⁶

v [Hz]

10¹⁹

10²²

 10^{25}

5

- Fermi-LAT resolved Cen A giant lobe at E>100 MeV
- Gamma-rays are produced through IC of CMB, EBL etc
- Northern lobe: B=0.89 uG, Ue/UB=4.3
- Southern lobe: B=0.85 uG, Ue/UB=1.8

Suzaku X-ray pointings in 2011

- Suzaku is suited to observe faint diffuse emission thanks to low non X-ray background
- Gamma-ray intense region (80 ks x 2, BGD: 20 ks x 2)

Exposure-corrected NXB-subtracted XISI images (0.5-2 keV)

Color bars are the same range and scale The unit is [counts/s/64pixels]

- Lines show background emissions produced by using best fit parameters from background observation (Lobe3)
- Excess soft emissions are seen around 0.8 keV

Additional thermal component

- In the model, additional mekal component is added (which represents lobe-related thermal emission), namely mekal+wabs*(mekal+pow+mekal)
- Parameters of 3 BGD components are fixed to those obtained from Lobe3 data fitting
- And then, Lobe 1 and 2 data were fitted

Model	Parameter	Lobe1	Lobe2
	BGD	Lobe3	Lobe3
Thermal 1	$kT \; [m keV]$	0.20 (fixed)	
(LHB)	Z	1.0 (fixed)	
	Norm $[10^{-3}]$	3.30 (fixed)	
Absorption	$N_{ m H}$	0.0707 (fixed)	
Thermal 2	$kT \; [{ m keV}]$	0.70 (fixed)	
(GH)	Z	1.0 (fixed)	
	Norm $[10^{-4}]$	3.79 (fixed)	
Power-law	Г	1.41 (fixed)	
(CXB)	Norm $[10^{-3}]$	1.04 (fixed)	
Thermal 3	$kT \; [{ m keV}]$	$0.46\substack{+0.08\\-0.11}$	$0.64{\pm}0.05$
(Lobe)	Z	1.0 (fixed)	
	Norm $[10^{-4}]$	$3.10^{+1.11}_{-0.53}$	$2.91\substack{+0.34 \\ -0.35}$
	Flux (absorbed, $0.5-2 \text{ keV}$)	5.84E-13	5.83E-13
	$\chi^2_ u/d.o.f$	1.20/444	1.13/515

TABLE 3. The best fit model parameters. Flux unit is $[erg/cm^2/s/0.35deg^2]$.

Thermal gas pressure

Mekal norm
$$K = \frac{10^{-14}}{4\pi (D(1+z))^2} \int n_e n_H dV$$

- Assuming that the the lobe has a size of 130 kpc (=2 deg for D=3.7 Mpc) along the line of sight and thermal plasma uniformly distributes over the cylindrical volume, Ne~(1-2)x10⁻⁴ cm⁻³
- Thermal gas pressure is $P_g = nkT \sim 8 \times 10^{-14} \text{ erg/cm}^3$. This is almost comparable to non-thermal pressure of $P_B + P_{rel}$ (In other words, plasma beta = $P_g / P_B \sim 1$ inside radio lobe)

Latest radio observation of Rotation Measure

Residual RM map of Cen A lobe (O'Sullivan+13)

$$\phi(L) = 0.81 \int_{L}^{0} n_e B_{||} dl \text{ rad } m^{-2},$$

A mean residual RM of ~12 rad m⁻², which corresponds to n_e~10⁻⁴ cm⁻³ (B~1uG, L~100 kpc)

The case of Fornax A west lobe

Fornax A exposures

Table 1. Suzaku and XMM-Newton data sets for For A.

Observatory	Sequence ID	Aiming posit	ion $(J2000.0)$	Observation	$t_{ m exp}^{*}$
		R. A.	DEC	start date	(ks)
Suzaku	801015010	$03^{h}22^{m}40.^{s}4$	$-37^{\circ}12'10''$	2006-12-22	86.7
	801014010	$03^{ m h}21^{ m m}40.^{ m s}4$	$-37^{\circ}09'52''$	2006-12-23	42.9
	804036010	$03^{ m h}20^{ m m}53 lap{.}^{ m s}3$	$-37^{\circ}02'03''$	2009-06-08	54.8
	804037010	$03^{ m h}22^{ m m}05 lap{.}^{ m s}5$	$-37^{\circ}58'03''$	2009-06-09	55.5
	804038010	$03^{ m h}21^{ m m}25.^{ m s}9$	$-37^{\circ}18'39''$	2009-06-30	47.0
	804038020	$03^{ m h}21^{ m m}25 lap{.}^{ m s}7$	$-37^{\circ}18'40''$	2009-08-02	39.6
XMM-Newton	0602440101	$03^{\rm h}21^{\rm m}29 .^{\rm s}3$	$-37^\circ11'30''$	2009-06-25	59.5

* The mean exposure time of the three XIS sensors for Suzaku and the two MOS and one PN sensors for XMM-Newton.

Nearby BGD exposures

Table 2. Suzaku data sets for the comparison regions in the Fornax cluster.

Sequence ID	Position (J2000.0)		Observation	Dist.*	$t_{\rm exp}^{\dagger}$
	R . A .	DEC	start date	(arcdeg)	$(ks)^b$
703038010	$03^{\rm h}31^{\rm m}06.3$	$-38^{\circ}24'05''$	2008-06-16	3.30	24.3
802037010	$03^{\rm h}13^{\rm m}10.^{\rm s}4$	$-37^{\circ}40'25''$	2007-06-28	5.55	15.0
802040010	$03^{h}19^{m}57.4$	$-32^{\circ}03'58''$	2007-06-29	5.13	19.7

* The distance from the center of the Fornax cluster at (R. A., Decl.)=(03^h38^m30^s9, -35^o27'16").
 † The mean exposure time of the three XIS sensors.

- Seta et al. (2013) analyzed archival Suzaku and XMM data to search for thermal emission from Fornax A West lobe
- Analysis method is quite similar: Comparison with BGD observations and search for excess thermal emission

Thermal emission from Fornax A west lobe

Object	$n_{ m e}$	$k_{ m B}T$	V	$\epsilon_{ m T}$	$\epsilon_{ m mag}$	$\epsilon_{ m NT,e}$	R
	(cm^{-3})	(keV)	(cm^3)	$(erg cm^{-3})$	$(erg cm^{-3})$	$(erg cm^{-3})$	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
For A [†]	$3.0 imes10^{-4}$	1.0	$3.4 imes10^{70}$	$1.4 imes10^{-12}$	$6.7 imes10^{-14}$	$5.0 imes10^{-13}$	2.5
Cen A‡	$0.9 - 2.5 \times 10^{-4}$	0.5	$2.0 imes10^{71}$	$2.4 imes10^{-13}$	$4.0 imes 10^{-14}$	$5.2 imes10^{-14}$	2.6

Total mass of entire lobe is~10¹⁰M_sun for both

* The parameters are (1) electron density, (2) temperature, and (3) emitting volume (cm^3) assuming a volume filling factor of unity for the lobe thermal emission. The energy densities of (4) the thermal emission, (5) magnetic field, and (6) non-thermal electrons.

(7) The ratio of energies in thermal to non-thermal components defined as $\epsilon_{\rm T}/(\epsilon_{\rm mag} + \epsilon_{\rm NT,e})$.

• Thermal/Non-thermal ratio is ~1, quite similar to Cen A lobe

Taken from N. Kawai's slide at MAXI workshop in 2010

Detectors					
	GSC (X-ray Gas Camera)	SSC (X-ray CCD Camera)			
Detector	Gas(Xe) prop. counter x12	CCD 16 chips x 2 camera			
Energy range (Q.E.>10%)	2-30 keV	0.5—12 keV			
Energy resolution (FWHM)	15.7%(at 8.0keV)	< 2.5%(150eV) (at 5.9keV)			
Time resolution & accuracy	<200µsec	~6 sec			
Instantaneous sky coverage	2.4 % of the whole sky (160 deg x 3 deg x 2 sets)	1.4% of whole sky (90 deg x 3 deg x 2 sets)			
Point Spread Function	1.5 degree	1.5 degree			
sensitivity	2 mCrab (week)	5 mCrab (week)			
collimator	GSC Slit	<section-header><image/></section-header>			

Taken from N. Kawai's slide at MAXI workshop in 2010

"First light" MAXI-GSC all-sky X-ray image over one ISS orbit (~90 min)

Image courtesy of Japan Aerospace Exploration Agency (JAXA)

Long-term light curves from bright sources such as Mrk 421 and Cen A

- Bright X-ray flares from Mrk 421
- Soft X-rays are delayed w.r.t hard X-rays by ~5-10 days

2. ASTRO-H Mission

- Orbit Altitude: 550km
- Orbit Inclination: ~31 degrees
- Launch : 2015 (JFY)

International Contribution NASA Micro Calorimeter Array/ADR Two soft X-ray Telescopes **Eight Science Advisors Pipeline Analysis** SRON & U. of Geneva Filter Wheel/MXS for SXS CEA/DSM/IRFU Contribution to BGO Shield/ASIC test ESA Three Science Advisors Contribution to mission instruments User support in Europe CSA Metrology System

Taken from T. Takahashi's Slide at Fermi symposium 2014

Astro-H/HXI and SGD 3σ sensitivities (100 ks exposure is assumed)

- Swift/BAT (15-300 keV)~IBIS/ISGRI
- COMPTEL & EGRET: all life-time
- Fermi: 5σ detection for I-year data
- MAGIC, HESS, CTA: 50h exposure
- HXI sensitivity is comparable to Nustar
- SGD has the highest sensitivity above Nustar and HXI bands (E>~80 keV)

Soft Gamma-ray Polarimetry by SGD

- Crab nebula is also a promising target for polarimetry
- Continuous monitoring with Swift/BAT, MAXI, Fermi, and IACTs are important to trigger SGD TOO observation

Wide-band spectroscopy by SXS+SXI+HXI+SGD

- Detection up to ~600 keV is promising!
- Search for cutoff in soft gamma-ray band for primary corona PL component
- Independent confirmation of blue-shifted absorption features (Ultra-fast outflow) by SXS and SXI for Cen A, 3C 120 etc
- First attempt to study "disk-jet-wind" connection using simultaneous Fermi-LAT and radio data

Summary

- Suzaku's larger effective area at E>~5 keV and low background is still useful to study
 - ✓ "Jet" X-ray emission from radio galaxies
 - ✓ Faint extended "thermal" emission from radio lobes: Thermal and non-thermal pressure (energy density) ratio is ~I
- MAXI: All-sky X-ray monitor
 - ✓ Daily X-ray light curve for bright X-ray sources such as Mrk 421 and Cen A
- Astro-H as a new powerful instrument to investigate AGN jets
 - ✓ Soft gamma-ray polarimetry at E>50 keV
 - ✓ Ultra-high energy resolution (~7 eV) and wide-band spectroscopy allow a first attempt to investigate "disk-jet-wind" connection