Poynting flux dominated jets challenged by photospheric emission

Based on work by **Asaf Pe'er**

University College Cork (UCC)

in collaboration with

Damien Begue

April 2015

Begue & AP, 2015, Ap.J. 802, 134

Motivation: "Photospheric revolution" in GRB prompt emission

Key spectral features:

"Broken power law"; E_{pk} <~ MeV

080916C(Abdo+09)

Main question: What radiative processes produce the spectra? Initial suspect: synchrotron (?)

→Violate 'synchrotron line of death' (Preece98);
→Emission mechanism cannot be (only) synchrotron

Same result: too narrow spectral width Spectral width of 1611 CGRO/ BATSE and 681 Fermi/GBM

Photosphere: inherent in "fireball" model

•Paczynski (1986); Goodman (1986); Shemi & Piran (1990); Rees & Meszaros (1992, 1994);

Photosphere Variability -> *several emission zones; (No predictivity !!)* NOTHING tells what is the emission radius !! Photosphere: inherent in all versions; (strong/weak B, high/low baryon load, etc.)

Jet magnetization: dynamical constraints

Blandford & Znajek 1977 Begelman & Li 1992 Meier et al. 2001 Koide et al. 2001 van Putten 2001

Barkov & Komissarov 2008

Fireball Model: long GRBs

Basic scenario:

Continuous reconnection & steady B-field decay rate

- ~50% of $\dot{E} \rightarrow$ acceleration,
- $\sim 50\% \rightarrow$ heating
- \rightarrow <u>Gradual acceleration</u>, $\Gamma(\mathbf{r}) \sim \mathbf{r}^{1/3}$

(Lyubarski's talk)

Dynamics >>

Begue & AP, 2015, Ap.J

Can thermal emission explain the spectra ?

Basic idea: *photon production rate*

◆ As long as $\dot{n}_{\gamma} > n_{\gamma,th} / t_{exp} \iff$ full thermalization.

 $\dot{n}_{DC} \sim T'^2 n_e n_{\gamma}$

Photon production processes:

- double Compton
- Brem. $\dot{n}_{B} \sim T^{1-1/2} n_{e}^{2}$
- cyclo-Synch. $\dot{n}_{sync} \sim T^{\prime 2} n_{e}^{\prime}$

Vurm, Lyubarski & Piran (13)

Magnetized flows:

 \rightarrow Condition fulfilled only for $r < r_{supp} \sim 5*10^9$ cm

Begue & AP (15)

Can thermal emission explain the spectra ?

Photon production rate:

$$\dot{n}_{\gamma} > n_{\gamma,th} / t_{exp}$$

- At r > r_{supp} ~ 5*10⁹ cm photon emission suppressed.
 → Full thermalization impossible
- At r< r_{ph}~6*10¹¹ cm
 - → photon # is conserved by multiple IC

 Continuous reconnection → continuous electron heating At r< r_c ~ 2*10¹¹ cm Efficient radiative cooling → Energy is divided between e⁻, γ

 \rightarrow photon temperature increase

At $r_c \sim 2*10^{11}$ cm < r < r_{ph} ~6*10¹¹ cm → inefficient cooling, T_e increases

 \rightarrow Photons: Wien spectrum, with T'~ u'/<n_v>

Electron temperature

Using thermal emission to constrain jet magnetization

Photon starvation \rightarrow Wien spectrum with

Using thermal emission to constrain jet magnetization

E_{pk} vs. L_{th}

High $\sigma \rightarrow \text{high } E_{pk}$, low L_{th} High reconnection rate \rightarrow High E_{pk}

Summary

★ Thermal component: a natural way of overcoming the steep slopes in GRBs Long GRBs (after broadening)

Highly magnetized flows & constant reconnection rate: 1000 18 photon production rate suppressed, Wien spectrum with E_{pk}>~few MeV Epk (MeV) inconsistent with (most) observations

2.0 Spectral width W Idex1

Begue & AP, 2015, Ap.J. 802, 134