Relativistic Jets in Super-Eddington Accretion Disks

Ramesh Narayan Olek Sądowski

GRRMHD Simulations are Now Possible

- GRMHD codes were developed in the early 2000s: Koide, Komissarov, De Villiers, Hawley, Gammie, McKinney, Fragile, Tchekhovskoy,...
- Many important applications to relativistic jets
- Ohsuga carried out R(Radiation)MHD simulations of pseudo-Newtonian disks
- Nobody attempted full GRRMHD simulations
- Achieved finally in 2014: Sądowski (KORAL) McKinney (HARMRAD)

Why is Radiation Hard?

- Radiation has to be handled as a separate fluid on top of magnetized gas
- Has its own speed, which can be very different
 - Serious problem because of Courant condition
 - Needs implicit techniques

Have to deal with different opacity regimes

- Optically thick: diffusion
- Optically thin: free-streaming

Actually, GRRMHD is Not so Hard!

- In BH accretion, the magnetized gas is already relativistic
 - Radiation fluid has comparable velocity
 - Fully implicit techniques not needed ---semi-implicit is sufficient
- Relativistic four-notation and technology are actually a major help
 - Energy-momentum conservation is easy
 - No conceptual problems (as in Newtonian)

How Should We Represent the Radiation Field?

- At each instant, the radiation field is sixdimensional: r, n, v
- Impractical to evolve the whole thing
- Simple prescriptions like diffusion or fluxlimited diffusion are not good enough
- Simplest consistent scheme is M1: considers four bolometric quantities: U, F
 Straightforward closure: stress tensor R^µ^ν

Gas vs Radiation

- In deriving hydrodynamic equations, we consider p, pv, etc., and close the equations with eqn of state: p(p,T)
- M1 is similar: U, $F \rightarrow R^{\mu\nu}$
- In hydrodynamics, viscosity has to be added separately via coefficients
- Same in radiation: can add radiation viscosity if needed

Super-Eddington Accretion Slim Disk: Hyper-Accretion

Mdot > Edd: GRRMHD needed

- Radiation pressure important
- Disk is optically very thick: $\tau >>1$
- Observed radiation comes from $\tau < \sim 1$
- Advection-dominated
- Puffed up: geometrically thick

All super-Eddington disks seem to have relativistic jets
 If we define P_{jet} = η_{jet} Mdot c²
 Baseline case: Zero BH spin, no strong organized field: modest jet power η_{jet}~0.02

Favorable case: BH spin with MAD field: can get large jet power: η_{jet} up to ~1 (?)

BZ Jet in a Low-Mdot ADAF/RIAF

- Clean problem
- Energy flows from BH via field lines in a force-free/MHD jet
- Mass, energy, ang mmtm are conserved along flux tubes
- Jet collimation concentrates the power into a small solid angle
- Some BH energy goes into the disk

a_{*} = 0.9 simulation of an ADAF in the MAD state (Sądowski et al. 2013) Jet power is primarily magnetic Initially, at small r, power is spread over a wide range of angle At larger r, power becomes focused by jet collimation At a very large r, magnetic energy → gas kinetic energy

What About Jets in Super-Eddington Disks?

- Less clean situation
- Energy can still flow out of BH via field lines
- But mass, energy, ang mmtm not conserved along flux tubes
- Radiation transfers energy across field lines
- Energy can flow from disk to jet
- Radiation accelerates

Radiative jets are modestly relativistic: v_{jet} ~ 0.5–0.9 c

Quick Summary

- Super-Eddington accretion flows always have jets
- Jet power: P_{jet} ~ (few—100%) Mdot c²
 Not Eddington limited!
- Jet velocity: v <~ 0.9 c</p>
- **Jet collimation:** $\theta_{jet} \sim 0.2$ radians
- MAD limit systems have not yet been simulated...
- Strong mass outflows are present

Super-Eddington Blazars

- Are there any blazars that are believed to be super-Eddington systems?
- Are their properties consistent with the "Quick Summary"?
- Are they different in some way from "normal" blazars?

Early Growth of SMBHs

- High z quasars with $M_{SMBH} \sim 10^{10} M_{\odot}$
- Tough with Eddington-limited accretion
- However, if there is enough gas supply(?), the SMBH can have Mdot >> Mdot_{Edd}
- Expect powerful jets: P_{jet} >> L_{Edd}
- Observational consequences?
- Feedback and Mdot regulation?

Tidal Disruption Events

According to standard models, all TDEs have early super-Eddington accretion
They should all have powerful jets
Reasonably broad beam: θ
Fairly modest Lorentz factor: γ
Current data are generally consistent...

Other Applications

Ultra-Luminous X-ray Sources
Any evidence for or against jets?
SS433, GRS1915+105
Gamma-ray bursts

Conclusion

GRRMHD simulations are now possible

- We can study super-Eddington accretion (also radiatively efficient thin disks)
- Jets appear to be universal in super-Eddington disks
- Applications to astrophysical sources are just beginning to be explored