

Role of Magnetic Field for Instabilities in Relativistic Jets

ERC Synergy project Black Hole Cam

Yosuke Mizuno Institute for Theoretical Physics

Goethe University Frankfurt am Main

Krakow Jet Meeting 2015, Krakow, Poland, April 20-24, 2015

Contents

- Introduction: Relativistic Jets & Instabilities
- CD kink instability in relativistic jets (strongly magnetized regime)
- KH instability in (spine-sheath) relativistic jets (weakly magnetized regime)
- Recollimation shock structure in relativistic jets
- Summary

Simulation and Theory of Jet Formation & Acceleration

- Relativistic jet is formed and accelerated by macroscopic plasma (MHD) process with helically twisted magnetic field
- Collimated jet is formed near the central BH and accelerates $\gamma >> 1$
- *But*, it has problems
 - Most of energy remains in Poynting energy (magnetic energy)
 - Acceleration need take longer time (slow acceleration efficiency)
- => Rapid energy conversion (dissipation) should be considered

Magnetic field lines

MHD process (schematic picture)

Dissipation in the Relativistic Jet

Shocks

•Time-dependent energy injection (internal shock)

•Change of external medium spatial structure (recollimation shock)

Magnetic Reconnections

•Magnetic field reversal or deformation of ordered magnetic field

MHD Instabilities

•Several instabilities are potentially growth => Turbulence in the jets and/or magnetic reconnection?

Turbulences

• Leads from MHD instabilities in jets

Key Questions of Jet Stability

- When jets propagate outward, there are possibility to grow of two major instabilities
 - Kelvin-Helmholtz (KH) instability
 - Important at the shearing boundary flowing jet and external medium
 - In kinetic-flux dominated jet (>10³ r_s)
 - Current-Driven (CD) instability
 - Important in existence of twisted magnetic field
 - Twisted magnetic field is expected jet formation simulation & MHD theory
 - Kink mode (*m*=1) is most dangerous in such system
 - In Poynting-flux dominated jet (<10³ r_s)

Questions:

- How do jets remain sufficiently stable?
- What are the Effects & Structure of instabilities in particular jet configuration?

We try to answer the questions through 3D RMHD simulations

Regions of AGN Jet Propagation

Current-Driven Kink Instability (strongly magnetized regime)

CD Kink Instability

- Well-known instability in laboratory plasma (TOKAMAK), astrophysical plasma (Sun, jet, pulsar etc).
- In configurations with strong toroidal magnetic fields, current-driven (CD) kink mode (m=1) is unstable.
- This instability excites large-scale helical motions that can be strongly distort or even disrupt the system
- Distorted magnetic field structure may trigger of magnetic reconnection.

Schematic picture of CD kink instability

Kink instability in experimental plasma lab (Moser & Bellan 2012)

Previous Work for CD Kink Instability

- For relativistic force-free configuration
 - Linear mode analysis provides conditions for the instability
 but say little about the impact instability has on the system
 (Istomin & Pariev (1994, 1996), Begelman(1998), Lyubarskii(1999),
 Tomimatsu et al.(2001), Narayan et al. (2009))
 - Instability of potentially disruptive kink mode must be followed into the non-linear regime
- We investigate detail of non-linear behavior of relativistic CD kink instability in relativistic jets
 - Static plasma column (rigidly moving jet), (Mizuno et al. 09)
 - Rotating relativistic jets

CD Kink Instability in Rotating Relativistic Jets

- **Here**: we investigate the influence of jet rotation and bulk motion on the stability and nonlinear behavior of CD kink instability.
- We consider differentially rotating relativistic jets motivated from analytical work of Poynting-flux dominated jets (Lyubarsky 2009).
- The jet structure relaxes to a locally equilibrium configuration if the jet is narrow enough (the Alfven crossing time is less than the proper propagation time). So cylindrical equilibrium configuration is acceptable.

Initial Condition

- Consider: Differential rotation relativistic jet with force-free helical magnetic field
- Solving RMHD equations in 3D Cartesian coordinates
- Magnetic pitch ($P = RB_z/B_\phi$): constant (in no-rotation case)
 - *a*=1/4: characteristic radius of helical B-field (maximum of toroidal field)
- Angular velocity ($\Omega_0=0,1,2,4,6$)
- **Density profile:** decrease ($\rho = \rho_0 B^2$)
- **Boundary**: periodic in axial (z) direction
- Small velocity perturbation with m=1 and $n=0.5 \sim 4$ modes $v_R/c = \frac{\delta v}{N} \exp\left(-\frac{R}{R_p}\right) \sum_{n=1}^{N} \cos(m\theta) \sin\left(\frac{\pi nz}{L_z}\right)$

Time Evolution of 3D Structure

- Displacement of the initial force-free helical field leads to a helically twisted magnetic filament around the density isosurface with n=1 mode by CD kink instability
- From transition to non-linear stage, helical twisted structure is propagates in flow direction with continuous increase of kink amplitude.
- The propagation speed of kink ~0.1c (similar to initial maximum axial drift velocity)

• First bump at t < 20 in E_{kin} is initial relaxation of system

- Initial exponential linear growth phase from t ~ 40 to t ~120 (dozen of Alfven crossing time) in all cases
- Agree with general estimate of growth rate, $\Gamma_{max} \sim 0.1 v_A / R_0$

• Growth rate of kink instability does not depend on jet rotation velocity

Dependence on Jet Rotation Velocity: 3D Structure

Larger $\Omega_0 =>$ *faster jet rotation*

 $\forall \Omega_0 = 2$ case: very similar to $\Omega_0 = 1$ case, excited n=1 axial mode

- Ω_0 =4 & 6 cases: n=1 & n=2 axial modes start to grow near the axis region
- ${}^{\bullet}$ Because pitch decrease with increasing $\Omega_{_0}$
- Propagation speed of kink is increase with increase of angular velocity
- Fast rotating jet case, the multiple mode interaction is happened => turbulent jet structure is developed

 $\Omega=2.0$

Ω=4.0

Dependence on B-field structure: 3D structure

 $\alpha < 1 => B_p$ dominated at larger radius

• α =0.75 case: Nonlinear evolution is similar to α =1 case.

 $\forall \alpha = 0.5$ case: growth of n=2 axial mode near the jet axis. Helical structure is slowly evolving radially.

 $\forall \alpha = 0.35$ case: growth of n=2 axial mode near the axis. In nonlinear phase, helical structure does not evolve radially and maintain the structure = nonlinear evolution is saturated

• The growth of instability saturates when the magnetic pitch increases with radius = jet is stabilized.

α=0.5

α=0.75

CD Kink Instability in Sub-Alfvenic Jets: Spatial Properties

Mizuno et al. (2014)

- In previous study, we follow temporal properties (a few axial wavelengths) of CD kink instability in relativistic jets using periodic box.
- Here, we investigate spatial properties of CD kink instability in relativistic jets using non-periodic box.

Initial Condition

- Cylindrical (top-hat) non-rotating jet established across the computational domain with a helical force-free magnetic field (mostly sub-Alfvenic speed)
- • V_{j} =0.2c, R_{j} =1.0
- Radial profile: Decreasing density with constant magnetic pitch $(a=1/4R_j, characteristic radius of helical B-field)$
- Jet spine precessed to break the symmetry (λ ~3*L*) to excite instability

3D Helical Structure $Decreasing density R_i > a$

- Precession perturbation from jet inlet produces the growth of CD kink instability with helical density distortion.
- Helical kink structure is advected with the flow with continuous growth of kink amplitude in non-linear phase.
- Helical density & magnetic field structure appear disrupted far from the jet inlet though multiple (axial) mode interaction.

- $R_{j} < a$: developed helical kink does not propagate with jet (perturbation is propagate through jet).
- *R*_j > *a*: developed helical kink propagates with jet (jet is maintained much larger distances)

Decreasing density: helical kink continuously grows => disruption of helical twist Increasing density: growth of helical kink is saturated => relatively stable configuration Radially decreasing density R < a

Kelvin-Helmholtz Instability (weakly magnetized regime)

Stabilities of magnetized spine-sheath jets against KH modes

- In previous works, KH instability is stable in sub-Alfvenic jet regime (magnetic field is strong).
- But observed jet is kinetic energy is dominated (magnetic energy is week) and jet is super-Alfvenic.
- Is relativistic jet unstable for KH mode everywhere?
- New idea: spine-sheath configuration (two-flow components)

Initial Condition

Mizuno et al. (2007)

• Cylindrical super-Alfvenic jet established across the computational domain with a parallel magnetic field (stable against CD instabilities)

- Solving 3D RMHD equations in Cartesian coordinates Jet (spine): $u_{jet} = 0.916 c (\gamma_j = 2.5), \ \rho_{jet} = 2 \rho_{ext}$ (dense, cold super-Alfvenic jet)
- External medium (sheath): $u_{ext} = 0$ (static), 0.5c (sheath wind)
- RHD: weakly-magnetized (sound velocity > Alfven velocity)
- **RMHD**: *mildly-magnetized* (sound velocity < Alfven velocity)
- Jet spine precessed to break the symmetry

Global Structure

3D isovolume density at t=60

- The precession perturbation from jet inlet leads to grow of KH instability and it disrupts jet structure in non-linear phase.
- Growth/damp of KH instability and jet structure is different in each cases.

Effect of magnetic field and sheath wind

1D radial velocity profile along jet

- The sheath flow reduces the growth rate of KH modes
- The magnetized sheath reduces growth rate relative to the weakly magnetized case
- The magnetized sheath flow damped growth of KH modes = *stabilize*.

Criterion for damped KH modes: (linear stability analysis)

4

Recollimation Shock (Transition region)

Observed Jet structure

Global structure of M87 jet (Asada & Nakamura 2012, Hada et al. 2013)

• The parabolic structure $(z \propto r^{1.7})$ maintains over 10⁵ r_s, external confinement is worked. • The transition of streamlines presumably et radius occurs beyond the gravitational influence of the SMBH (= Bondi radius) • Stationary feature

HST-1 is a consequence of the jet recollimation due to the pressure imbalance at the transition

• In far region, jet stream line is conical ($z \propto r$)

•2D non-equilibrium over-pressured jet in cylindrical geometry ($\gamma_i \sim 3$)

• Multiple stationary recollimation and rarefaction structures are produced along the jet by the nonlinear interaction of shocks and waves

• jet is partially boosted by rarefaction acceleration

Dependence on B-field strength

• $\gamma_{\rm max}/(\gamma_{\rm max})_{\rm HD}$ -1: relative increase of Lorentz factor with respect to the purely HD case

- Acceleration is the result of conversion of plasma thermal energy into jet kinetic energy (quantity γh is conserved across a rarefaction wave)
- Axial case: *larger* Lorentz boost. Relative boost has a simple quadratic dependence
- Toroidal case: *smaller* Lorentz boost due to magnetic tension
- Helical case: depends on magnetic pitch (=> next slide)

- Relative difference of the maximum Lorentz factor smoothly joins two extreme cases of toroidal and axial fields
- Transition between two regimes takes place at $P_0 > 1$, that is, when *a*: characteristic radius of helical field (maximum of toroidal field) > R_j
- Saturate to the axial field case when $a \sim 10 R_{i}$
- Simple fitting with a hyperbolic tangent function (red-dashed lines)

Summary

- The CD kink instability is partially stabilized by a radially increasing density structure (= non-destructive kink structure in observed jet).
- Advection of helical kink structure depends on location of velocity shear inside/outside of the characteristic radius of helical field (most likely advects with jet motion)
- The strongly deformed magnetic field via multiple mode interaction of CD kink instability may trigger of magnetic reconnection in the jet (rapid energy dissipation)
- The KH instability is stabilized by the presence of magnetized sheath wind even when the jet is super-Alfvenic flow.
- The recollimation shock structure can be modified by the presence of magnetic field, especially helical field yields more complex substructure.