The Jet Recollimation Shock: A Dramatic Altering of Jet Magnetic and Kinematic Structure On Difficult-to-Observe Scales

> David L. Meier & Marshall H. Cohen California Institute of Technology

Relativistic Jets: Creation, Dynamics, & Internal Physics Krakow, Poland; 21 April 2015

Conclusions

- Launching, acceleration, & collimation are NOT the whole jet formation story
- It appears that in at least most strong AGN jets there is a significant feature/event in the propagation of a super-magnetosonic jet:

 quasi-stationary (re-)collimation shock (RCS)
 a
- The RCS appears to convert the pinch-unstable flow into a stable one that continues out to the ~100 kpc lobes
- This feature occurs on scales intermediate between black hole and lobes
 - It is very far from the BH in rg (104–6) but well within the galactic core
 - However, it is very difficult to distinguish on the sky from the BH itself:
 - Nearby (z ~ 0.1): $40 4000 \ \mu as$ (foreshortened blazar); $400 40,000 \ \mu as$ (if jet is in plane of sky)
 - Far $(z \sim 1.0)$: $10 1000 \mu as$ (foreshortened blazar); $100 10,000 \mu as$ (if jet is in plane of sky)
- The RCS in M87 (HST-1) appears to be responsible for the jet "break" (cf. Nakamura)
- The RCS also may play an important role in the FR I / II dichotomy
- The only telescopes that can distinguish RCS activity from BH activity are: the EVN (>5000 μas), the VLBA (>100 μas), and the EHT (> 10 μas)
- VLBI IS ABSOLUTELY CRUCIAL TO UNDERSTANDING JET FORMATION

M87: The Rosetta Stone

Lind, Payne, dlm, & Blandford (1989); Komissarov (1999) also Nakamura & dlm (2014)

- Similar recollimation shock systems are seen in other BL Lac / FR I-type sources (BL Lac, OJ 287, 3C 120, *etc.*)
 - IDEAL MHD flow of a super-magnetosonic jet, without Ohmic dissipation, seems to be a good model for flow near FR I (BL Lac) recollimation shocks

BL Lac: Confirmation of RCS (Quasi-) Stationarity (Cohen, dlm, et al. 2014)

BL Lac vs. M87

- Smaller black hole ([\sim 0.1– 0.3 *vs*. \sim 6] × 109 M \odot)
- Pointed more toward Earth (~6° *vs*. 14° to line-of-sight)
- Further away (~270 vs. 15 Mpc [ang. size distance])
 RCS should be ~0.3 pc from BH or ~ 0.2 mas from core
 - Of all BL Lac components, only C7 & core are stational
 - Moving components emanate from C7 (not the core) <u>like HSI-1</u>
 - So, we suggest that C7 is the BL Lac jet recollimation shock, *just like 1*
- The Post-RCS Jet ("current-carrying")
 - EVPA is primarily longitudinal in BL Lac (objects) <u>-</u>X-verse magneti
 - Fractional polarization increases with distance from core <u>___</u>conical flow

• The Moving Components in BL Lac

- All are relativistic (2c < Vapp < 10c)
- We modeled the slowest component as a slow MHD wave and fastest as a fast MHD wave
- Assuming VS ~ 0 in jet frame, we find $\Gamma Fjet \approx 1.7$ in jet frame and $\Gamma jetgal \approx 3.5$, *in galaxy frame*
- This model does not allow us to determine relative magnetic field Attength VAB AmDAjer A

BL Lac: Confirmation of Strong Helical Magnetic Field In Post-RCS Flow (Cohen, dlm, et al. 2015)

- BL Lac displays **RELATIVISTIC** Transverse Waves !!
 - Wiggles that propagate down the jet with time
 - These waves seem to be generated by transverse shifts in the RCS *w.r.t.* the core and, hence, in the inner jet position angle
 - Speed of the wave is between slowest & fastest components
 - 2c < [Vapp,wave = 4.9c] < 10
 - Moving components (e.g., C16) is drawn aside by wave
 - Components are not ballistic "blobs"
 - We modeled the transverse waves as Alfven waves or
 - Specific model:
 - Vjet ~ cms (trans*magneto*sonic flow; *cf*. LPMB, Bicknell) *in galax*
 - *V*wave = $VA \cos \chi$ in jet frame (*i.e.*, assume helical field)
 - Slowest & fastest components are $\cos \chi \otimes VF$ in jet frame, res
 - Model results: Γ jetgal $\approx 2.8 \text{ <u>in galaxy frame</u>;}$
 - In jet frame cs = 0.3c, VA = 0.857c, cms = 0.870c, Mms = 1.5, $\chi =$
 - VS = 0.22c ($\Gamma Sjet \approx 1.025$)
 - *V*wave = 0.63c (Γ wavejet \approx 1.29)
 - *V*F = 0.86c (ΓFjet ≈ 2.0)
 - NOTE: pitch angle derived from MHD wave models (43°) is sn

than derived from BL Lac pol obs (>60°), but this Applies Apple A DATA

What Would Cause a Recollimation Shock to Form So Far from the Black Hole?

- External collimation: change in ISM pressure profile at BH Bondi radius (Asada & Nakamura 2012; Nakamura & Asada 2013)
 - Jet accelerates & collimates in a decreasing BH cusp pressure gradient
 - Near the Bondi radius, jet enters uniform pressure region and overcollimates

– P	roblem?: I	-'R II-tv	de RCS	s mav	occur 100x	closer t	han rB	(Cohe	n et al. 2014
			D	Table 2	. 01 1				
Distance to Recollimation Shock									
Name	z	Class	pc/mas	theta	Dist to Shock	$\log M_{\rm BH}$	log R	Ref.	
BL Lac	0.0686	BLL	1.29	6	0.26	8.2	5.6	1, 2	
M87	0.00436	FR I	0.08	13	860	9.8	5.7	1, 3, 4	FR I-type
3C 120 S1	0.033	FR I	0.65	16	0.7	7.8	5.7	5,6	I I I I U P
3C 120 C80					80			6,7	
3C 273	0.158	FSRQ	2.70	6	0.15	9.8	4.1	8.9	ED II true
3C 390.3 S	0.0561	FR II	1.09	50	0.28	8.6	4.3	10, 11	rn II-typ

- Self-collimation: magnetic focusing beyond the Fast Magnetosonic
 Separatrix Surface (Achterberg, Blandford, Goldreich 1983; Vlahakis *et al.* 2000 Polko, dlm, Markoff 2010, 2013, 2014)
 - Specific model: self-similar axisymmetric relativistic MHD, with 3 critical points applied (Alfven, modified fast [FMSS], modified slow [SMSS])
 - Requiring an FMSS (magnetosonic horizon) produces jet focusing
- More careful measurements of BH RCS distances are needed in many AGN in order to understand the over-collimation mechanism¹⁴

AGN

• EXAMPLE: 109 M[•] black hole

- Case 1: rRCS \approx rB \approx 84 pc _____ mas separation (certainly FR I / BL Lacs; maybe FR II also)
 - Nearby (z = 0.1): 45 mas (jet in plane of sky) $\pm < 5$ mas (foreshortened in blazar)
 - Far (z = 1.0): 10 mas (jet in plane of sky) $\pm \sim 1$ mas (foreshortened in blazar)
- Case 2: rRCS \approx 104.2 rg = 0.75 pc $_{\pm}$ µas separation (maybe some/all FSRQs & FR IIs?)
 - Nearby (z = 0.1): 400 μ as (jet in plane of sky) = 40 μ as (foreshortened in blazar)
 - Far (z = 1.0): 90 μ as (jet in plane of sky) \pm 9 μ as (foreshortened in blazar)

*** Most Telescopes Cannot Distinguish Between BH and RCS activity ***

- Fermi LAT: angular resolution ~ 106–7 mas
- NuSTAR / PolSTAR (X-Calibur) ~ 104–5 mas
- HST / JWST $\sim 50 100$ mas
- ALMA $\geq 5 \text{ mas}$
- Only VLBA, maybe EVN, and eventually EHT
 - EVN ≤ 0.5 mas
 - VLBA ~ 0.1 mas (super-resolution mode; $\delta\theta \sim [S / N] 1/2$)
 - EHT \leq 10 µas
- In order to identify where the source activity is occurring, *** Most Telescopes will Need to Correlate Time-Dependent Activity with VLBA or Other VLBI Telescope Images ***

Where in its Travels Does a Jet Decide to be an FR I or II?

• Bicknell (1985, 1995) identified

- FR Is as tran<u>sonic</u> jets that decelerate
- FR IIs as super<u>sonic</u> jets that continue so out to the hot spots and radio lobes.
- Geoff put the radius where this occurs at ~600 pc (galaxy "core" radius)
- But, unified schemes (Urry & Padovani 95) indicate that (at low-mid redshift)
 - FR Is (> kpc scale) = BL Lacs (10-100 pc scale, deprojected)
 - FR IIs (> kpc scale) \approx FSRQs (10-100 pc scale, deprojected)
 - ***So, jets know they will be an FR I or FR II < 10-100 pc from the BH
- Meier et al. (1997) suggested the "magnetic switch" mechanism
 - Like an "Eddington limit" for magnetic fields
 - Occurs <u>in inner accretion disk</u> at ~10-20 rH (< 10-3 pc)
- Gopal-Krishna & Wiita (2000): the HYMOR test
 - HYbrid MORphology objects have one FR I jet & one FR II jet !
 - Such sources appear to exist for \geq (jet travel time to the lobes) $\approx 3 \times 105$ yr. Tsai et al.
 - Time for galactic ISM weather to alter the 2 jets should be tweather $\ge 10 \text{ tdyn} = \mathfrak{l}(20\text{ N})$
 - At 10-20 rH, 10 τdyn ~ 6 wks! So, magnetic switch cannot be FR I / II process

10 Baneting 21 Ban

How Could RCS Determine FR I / II Nature? Application of RESISTIVE MHD to FR II (FSRQ) Sources

- Magnetic Properties of FR II Sources Differ from FR Is
 - FR II morphology can be reproduced with HD alone Blandford & Rees 1974; Norman *et al.* 1982)

sub-magnetosonic

• More importantly, FR II Hot Spots are weakly magnetized Murphy *et al.* 2012) Pmag = B2 / $8\pi \sim 1\%$ Pplasma

hyper-MS

(V. >> C.

RCS

• If FR II jets are launched like FR Is, why are FR II outer jets de-magnetized?

hyper-sonic ($V_i >> c_s$)

Quasar

VLBI iet

• Hypothesis: Very Powerful (FR II) Sources Develop Super-magnetosonic MHD Turbulence in the Recollimation Shock (dlm 2013)

Hypothesis: Super-MS MHD Turbulence Deve

• Super-MS Turbulence has a very fast magnetic field reconnection rate (Lazarian & Vishniac 1999)

trecon / tflow ~ Mjet / Mturb2 << 1

• Resistivity reconnects and dissipates magnetic field into HEAT in RCS

FR II Extended jet

Weakly

Magnetized

Cygnus A with VLA (Dreher *et al.* 198(Werner,

Other Types of Jetted Sources

- GRBs: Dissipation in shocks below GRB photosphere (Bromberg 2011; Levinson 2010, 2012)
- X-ray Binary Jets: Models of broad-band emission require a strong shock after jet collimation (Markoff *et al.* 2001 *etc.*)

- Protostellar Jets: HH 212 shows (Correia et al. 2009):
 - (Non-relativistic) pair of strong shocks flanking central source
 - Multiple component (bow shock) ejections from each feature

Correia *et al*. (2009)

Conclusions

- Launching, acceleration, & collimation are NOT the whole jet formation story
- It appears that in at least most strong AGN jets there is a significant feature/event in the propagation of a super-magnetosonic jet:

 quasi-stationary (re-)collimation shock (RCS)
 a
- The RCS appears to convert the pinch-unstable flow into a stable one that continues out to the ~100 kpc lobes
- This feature occurs on scales intermediate between black hole and lobes
 - It is very far from the BH in rg (104–6) but well within the galactic core
 - However, it is very difficult to distinguish on the sky from the BH itself:
 - Nearby (z ~ 0.1): $40 4000 \ \mu as$ (foreshortened blazar); $400 40,000 \ \mu as$ (in plane of sky)
 - Far $(z \sim 1.0)$: 10 1000 µas (foreshortened blazar); 100 10,000 µas (in plane of sky)
- The RCS in M87 (HST-1) appears to be responsible for the jet "break" (cf. Nakamura)
- The RCS also may play an important role in the FR I / II dichotomy
- The only telescopes that can distinguish RCS activity from BH activity are: the EVN (>5000 μas), the VLBA (>100 μas), and the EHT (> 20 μas)
- VLBI IS ABSOLUTELY CRUCIAL TO UNDERSTANDING JET FORMATION