THE HADRONIC MODEL OF ACTIVE GALACTIC NUCLEI

A. Mastichiadis University of Athens

TALK OUTLINE

- High Energy Emission from Active Galactic Nuclei
- Hadronic Models: key ideas and processes
- MW fits and simulated variability of Mrk 421
- BL Lacs as IceCube neutrino sources
- Proton supercriticalities: revisiting a long-standing issue

In collaboration with

- Maria Petropoulou
- Stavros Dimitrakoudis

GAMMA-RAYS AND AGN

Fermi gamma-ray detector

2nd LAT AGN catalog: 1016 sources (2011)

- 395 BL Lac objects
- 315 FSRQs
- 156 blazars of unknown type

c.f. EGRET catalog: 66 AGN (1995) COS-B catalog: 1 AGN (1983)

What has Fermi found: The LAT two-year catalog

BLAZAR PROPERTIES

- Compact, flat spectrum radio sources.
- Broad (radio-γ) non-thermal continuum.
- Variable at all energies correlations!
- Superluminal motion → beaming → emission from inside the jet.
- Short variability → emission from a localized region.

Fosatti et al 2008

RADIO-LOUD AGN

Blazar (BL Lac + Quasars)

radiogalaxy

Open questions: • Emission mechanism (leptonic or hadronic)

• Jet composition (electron-proton; electron-positron, B)

 Emission zone – location of energy dissipation

LEPTONIC MODEL FOR H.E. EMISSION

...AND THE HADRONIC MODEL

INTERACTION OF NUCLEONS WITH PHOTON FIELDS

photopair production

$$N + \gamma_{target} \longrightarrow N + e^+ + e^-$$

 $s^{1/2}_{threshold} = m_p + 2m_e$

photomeson production

$$N + \gamma_{target} \longrightarrow N + \pi s + ..$$

 $s^{1/2}_{threshold} = m_p + m_{\pi 0}$

THE HADRONIC MODEL: PHYSICAL PROCESSES

Courtesy of R.J. Protheroe

Protons:

(1) Mrk 421 : SPECTRAL FITS AND TEMPORAL BEHAVIOR

SED OF Mrk 421: LEPTO-HADRONIC MODELS

AM, M. Petropoulou, S. Dimitrakoudis 2013

	V-Xrays	γ-rays	
LH-π model	e-syn	photopion	
LH-s model	e-syn	p-syn	
	LH-π	LH-s	
Dominant energy density	Protons	B-field	
Maximum proton energy	~PeV	~EeV	

Bethe-Heitler pair-production hump is an unavoidable consequence of the LH-π model (Petropoulou + AM 2015)

See Poster #63

VARYING THE INJECTION LUMINOSITY

Assume small amplitude random-walk variations in proton and electron injection

Injection and spectra when p and e totally correlated

PHOTOPION vs P-SYN: TIME VARIATIONS

Correlated: no time lag Correlated: time lag of 80 tor Uncorrelated

Photopion:

When electrons-protons are correlated, TeV (hadronic) and X-rays (leptonic) vary quadratically Even when electronsprotons totally uncorrelated, X and TeV retain some correlation

P-syn:

When electrons-protons totally correlated, X and TeV linear. When uncorrelated, all X-TeV correlation is lost.

(2) BLAZARS AS NEUTRINO AND COSMIC-RAY SOURCES

THE 'SMOKING GUN': NEUTRINO EMISSION

Due to differences in fitting parameters
LHπ model: PeV neutrinos with high flux → IceCube
LHs model: EeV neutrinos with low flux

S. Dimitrakoudis et al. 2014

BL Lac – IceCube EVENTS ASSOCIATION?

The facts

- IceCube: 37 events 0.1 1 PeV (Aartsen et al 2013,2014)
- Background or point sources?
- 8 possible associations between Bl Lac – IceCube events (Padovani & Resconi 2014)
 - 6 (out of 8) BLLacs with good quality observations

The challenges

- Can hadronic models (LHπ) fit the SED of these blazars? (sources not apriori selected!)
- Is the associated neutrino flux compatible with IceCube detections? (tailor-made: SED fit → source parameters → neutrino flux)

IceCube ID	Counterpart(s)	Class	Catalogue(s)
9	MKN 421 1ES 1011+496	BL Lac (HSP) BL Lac (HSP)	TeVCat/WHSP TeVCat/WHSP
10	H 2356-309	BL Lac (HSP)	TeVCat/WHSP
17	PG 1553+113	BL Lac (HSP)	TeVCat/WHSP
19	1RXS J054357.3-553206	BL Lac (HSP)	WHSP
20	SUMSS J014347-584550	BL Lac (HSP)	WHSP
22	1H 1914-194	BL Lac (HSP)	WHSP
27	PMN J0816-1311	BL Lac (HSP)	WHSP

Padovani & Resconi 2014

H 2356-309 (ID 10)

Mrk 421 (ID 9)

1ES 1011+496

Petropoulou et al 2015

UHECR FROM NEUTRON ESCAPE

Small UHECR contribution from nearby
BL Lac objects if similar to Mrk 421
Lower luminosities
Larger distances

LHs model: Mrk 421 CR peak at ~30 EeV

(3) A THEORETICAL ISSUE: HADRON SUPERCRITICALITIES

PROTON SUPERCRITICALITIES: THE EARLY DAYS

AM, Protheroe, Kirk 2005

Stern & Svensson 1991

Monte-Carlo

Stability criteria - analytical

Kinetic equations

Kirk & AM 1992

INCREASING THE PROTON INJECTED LUMINOSITY

 $4\pi Rm_p c^3$

 σ_T

 $L_p =$

Proton injected luminosity is increased by a factor 3

Dimitrakoudis et al. 2012

THE STEP TO SUPERCRITICALITY

log x

subcritical to the supercritical regime

HADRONIC MODELS AS DYNAMICAL SYSTEMS

When supercritical, depending on the (constant) proton injection rate, the system goes from limit cycle behavior to damped oscillations to steady state <u>M</u>. Petropoulou & AM 2012

A PROTON SUPERCRITICALITY 'ZOO'

Loops are a way of extracting efficiently energy stored in protons

VARIABLE PROTON INJECTION: FROM SUB-TO SUPER-CRITICAL

proton luminosity

photon luminosity

M. Petropoulou et al. in preparation

CONCLUSIONS

- One-zone hadronic model
 - Accurate secondary injection (photopion + Bethe Heitler)
 - Time dependent energy conserving PIDE scheme

Two brands of hadronic models for AGN MW emission:

- LH π : γ -rays from photopion + EM cascade (more energetically demanding)
- LHs : γ-rays from proton synchrotron (requires higher proton energies)
- Both fit MW equally well $LH\pi$ predicts a Bethe-Heitler hump at MeV energies
- Time-variations favour LH $\pi \rightarrow$ X-ray TeV correlations more natural
- BL Lac IceCube neutrino events correlations: successful MW fits using the LH π model of 6 sources \rightarrow neutrino flux and energy very close to the one measured

 Hadronic systems are dynamical systems → for constant injection either they reach steady state or they show limit cycle behavior of a prey-preadator type (gradual accumulation + explosive release)

• When supercritical \rightarrow highly efficient

• If varying injection in and out from the supercritical regime \rightarrow series of strong, randomly distributed outbursts – more GRB-like behavior than AGN.

HADRONIC MODELS: MYTHS AND FACTS

Myth: Hadronic models are inefficient

Fact: Not always. When in supercritical regime, their efficiency approaches ~1

Myth: Bethe-Heitler pair production can 'safely' be neglected
 Fact: Even if BH causes smaller losses than photopion, the radiative signature of the pairs appear in distinct spectral regime of the SED.

Myth: Use of a 'ready' relativistic proton distribution function to obtain a radiated photon spectrum → SED.
 Fact: This approach misses entirely the feedback loops and therefore can lead to erroneous results.

AUTOMATIC GAMMA-RAY QUENCHING

Stawarz & Kirk 2007

M. Petropoulou & AM 2011

PHOTON QUENCHING AND PROTON SUPERCRITICALITY

Soft photons from γ-ray quenching pump proton energy → proton losses → more secondaries → more γ-rays
 Exponentiation starts when γ-rays enter the quenching regime.

Photon spectra for various monoenergetic proton injection energies just before supercriticality

