

Modeling Variability of Blazar Jets with a Turbulent Magnetic Field

Alan Marscher

Institute for Astrophysical Research, Boston University

Research Web Page: <u>www.bu.edu/blazars</u>

Variations in Linear Polarization: Evidence for a Disordered Magnetic Field Component: The Quasar CTA102

Polarization varies erratically, as expected if it results from turbulence (or some disordering similar to turbulence)

Linear Polarization from Turbulent Cells with Random Field Directions

- Case of N cells, each with a uniform but randomly directed magnetic field of same magnitude
- <u>Mean polarization</u>: $\langle p \rangle = p \max/N1/2$ $\sigma p \approx \langle p \rangle/2$ (Burn 1966, MNRAS)
- Electric-vector position angle χ can have any value
- ☐ If such cells pass in & out of emission region as time passes,
- p fluctuates about
- χ varies randomly, often executing apparent rotations that can be
 - > 180°, usually not v_{I}

(T.W. Jones 1988, ApJ)

Linear Polarization from a Helical Magnetic Field

Assume that helical field propagates down the jet with the plasma (as in MHD models for jet acceleration & collimation)

```
\mathbf{B}' = Bt' \cos \phi \mathbf{i}' + Bt' \sin \phi \mathbf{j}' + Bz' \mathbf{k}'
```

Degree of polarization depends on viewing angle & Γ (see Lyutikov, Pariev, & Gabuzda 2005, MNRAS)

Face-on ($\theta = \theta' = 0$): **p** = 0 (from symmetry) if **Iv** is uniform across jet

Side-on ($\theta' = 90^{\circ}$): $\chi = 0^{\circ}$ if Bz' < Bt' & $\chi = 90^{\circ}$ if Bz' > Bt'p depends on Bt'/Bz'

Other angles: qualitatively similar to side-on case

Variations in Linear Polarization: Evidence for a Disordered Magnetic Field Component: BL Lac

Sample Simulated Light Curve from Turbulence - Case of 100% turbulent field with no shock

Outbursts & quiescent periods arise from variations in injected electron density - Random with red-noise probability distribution

- Very rapid fluctuations result from turbulence

Polarization is stronger at higher frequencies, as generally observed

Position angle fluctuates randomly, with apparent rotations (usually not very smooth) in both directions

Where is the jet turbulent? Near the mm-wave "core"

The "Core" of Blazar Jets

Observations suggest that core on VLBI images is <u>either</u>:

- 1. $\tau \sim 1$ surface (τ = optical depth to synchrotron absorption)
- 2. First standing (oblique or conical) shock outside τ ~ 1 surface

HD simulation (Gómez et al. 1997)

2 ~ stationary features with variable polarization downstream of core

Turbulence in Blazar Jets

Cawthorne (2006, MNRAS), Cawthorne et al. (2013): "Core" seen on 43 GHz VLBA images has radial polarization pattern similar to that of turbulent plasma flowing through a standing, cone-shaped shock

Proposed Blazar Model

- Strong helical magnetic field in inner jet, turbulence becomes important on parsec scales
- Flares from moving shocks and denser-than-average plasma flowing across standing shock(s)
- Turbulent field accelerates particles via 2nd-order Fermi + magnetic reconnections
- Shocks increase energies of particles, especially in locations where B || shock normal

Turbulent Extreme Multi-zone (TEMZ) Model (Marscher 2014, ApJ)

Many (e.g., 169) turbulent cells across jet cross-section, each followed after crossing shock, where e-s are energized & Compton scatter seed photons from dusty torus & Mach disk*; each cell has its own uniform magnetic field selected randomly from turbulent power spectrum + its own e- population

Electron Energy Distribution in TEMZ Code

- Power-law (slope= -s) injection into cell that is crossing the shock front
- From 2nd-order Fermi + magnetic reconnections upstream of shock
- -Synchrotron & external Compton energy losses downstream of shock
- -Maximum electron energy produced by shock depends on angle between magnetic field & shock normal
- This restricts optical & $\gamma\mbox{-}ray$ emission to a small fraction of cells near shock front
- Spectral index steeper than s/2 (radiative loss value), as observed
 Mean polarization is higher & fluctuations greater at higher
 frequencies, as observed
- **Optical & γ-ray flux variability more pronounced than in mm-IR &** X-ray

Sample Simulated Light Curve Similar to BL Lac Case of 20% turbulent, 80% helical field ahead of standing shock

Outbursts & quiescent periods arise from variations in injected electron density - Random with red-noise probability distribution

Most flares are sharply peaked, as often observed

Polarization is stronger at higher frequencies, as generally observed

Position angle fluctuates, but is usually within 50° of jet direction (as observed in BL Lac)

25-day Blow-up to See Details for Different Levels of Helical Field

Up to ~50% of the magnetic field can be toroidal without strongly affecting the variability characteristics of either the multi-waveband flux or the optical polarization! Even 80% toroidal varies rapidly.

For viewing angles < 1/2Γ, helical field can decrease <Π> to match observed value

Sample Simulated Spectral Energy Distribution

Data: BL Lac at different times (Wehrle et al. 2015, ApJ, submitted)

Power Spectra of Polarization Variations of Simulation

Break frequency higher for more turbulent field

Flux Variability of Blazars: Power-law Power Spectra

Sample Correlations from Simulations

Difference between EVPA & Jet Direction vs. Degree of Pol.

Difference larger at lower polarization levels

Can compare quantitatively to observations

Wavelength Dependence of Optical Polarization

Simulated: More common: Π (B-band) > Π (R-band) Large difference in χ only when $\Pi < 3^{\circ}$

Sample observed wavelength

levels.)

Turbulence (or reconnection) Solution to Time-scales Narayan & Piran 2012)

- Need to understand that opening angle of jet is very narrow: ~ 0.1/Γflow (Jorstad et al. 2005; Clausen-Brown et al. 2013)
- Half-width of jet at core ~ 0.1 d(core,pc) Fflow-1 pc (observed in typical quasar: ~0.1 pc)

"Blob" is ~ 5-10 times smaller than cross-section

• If filling factor *f* of cells with electrons of high enough energy to emit at at optical/gamma-ray frequencies is low, time-scale of variability can be very short:

tvar ~ 30 f1/2 (1+z) (Γ flow δ flow δ turb)-1 d(core,pc) days

Minutes for smaller, less distant blazars like TeV BL Lac objects

(see also

CONCLUSIONS

- Combined international effort is now producing multi-waveband flux & polarization data with sufficient time coverage to follow variations in dozens of blazars
- Patterns are seen in data some apparently systematic, others apparently random that we can interpret in terms of physical properties of the jets
- Erratic variations of flux & polarization indicate that turbulence is important, but there is also ordering of field relative to jet direction ^H shock(s)
- Polarization of mm-wave "core" is consistent with conical shock
- Acceleration of electrons can be combination of 2nd-order Fermi + reconnections from turbulence, with boost to highest energies in shocks
- Model with turbulence + shock(s) shows promise in explaining much of the multi-waveband flux & polarization vs. time (as well as SEDs) of blazars
- Statistics of flux & polarization variations are sensitive to level of turbulence
- mm-wave VLBI polarized intensity images (e.g., with EHT) test "core" = conical shock scenario