

Blazars (and other AGNs) seen by the Fermi-LAT

Benoît Lott CEN Bordeaux-Gradignan lott@cenbg.in2p3.fr on behalf of the Fermi-LAT collaboration

The Fermi-LAT

LAT performance

http://www-glast.slac.stanford.edu/software/IS/glast_lat_performance.htm

 γ_1 incoming gamma ray

electron-positron pair

- energy range: 30 MeV 300 GeV
- large FOV: 2.4 sr
- A_{eff}:~8000 cm² at 1 GeV
- PSF: $\theta_{68\%}$ ~0.8° at 1 GeV
- altitude: 565 km
- inclination: 25.6°
- orbital period: 91 min
- whole sky covered in 2 orbits in survey mode (rocking angle 50°)
- public data, available within 12 h
- operation garanteed until 2018

Krakow 04/23/15

Space Telescope

Gamma-Ray Blazar Populations

- 4 years, P7REP_SOURCE_V15, improved PSF
- Front/Back handled separately (different isotropic and Earth limb)
- Energy range 100 MeV 300 GeV 3033 sources, 2192 at |b|>10°

Association-Classification

Two associations methods: Bayesian method Likelihood ratio (LR) method Two classification schemes: • Optically-based (stength of broad lines): FSRQs, BL Lacs, BCUs (aka Sources of Unknown Type) • SED-based: Low-, Intermediate-, High-Synchrotron-Peaked sources (LSPs, ISPs, HSPs resp.) 3LAC: manually-controled SED fit

Sermi

Gamma-ray

Catalogs used for association

- •Véron-Cetty & Véron
- •BZCAT
- VLBA Calibrator list
- •CRATES
- •CGRaBs
- TeVCat
- •ATCA 20-GHz survey
- •WISE gamma-ray blazar candidates
- •1WHSP
- •NRAO VLA Sky Survey

•Sydney University Mongolo Sky Survey

•ROSAT All Sky Survey Bright and Faint Source Catalogs

False-positive rate <2%

Preliminary

- 23 other AGNs
- Differences between Northern and Southern Hemispheres: 40% of BL Lacs in Southern Hemisphere

Gamma-rav ace Telescope

Non-Blazar and Misaligned AGNs

3 FRII
7 SSRQ or CSS
5 Radio-loud NLSyI
6 Other AGNs

CSS: compact steep spectrum SSRQ: steep-spectrum radio source

Name	3FGL	2FGL	IFGL	Pr	Photon inde
NGC 1218	J0308.6+0408*		J0308.3+0403*	FRi e	in:
IC 310	J0316.6+4119*	J0316.6+4119		FRI/BLL	"In
NGC 1275	J0319.8+4130*	J0319.8+4130*	J0319.7+4130*	FRI	2.07
1H 0323+342	J0325.2+3410*	$J0324.8 + 3408^*$	$J0325.0 + 3403^*$	NLSy1	2.44 ± 0.12
4 <u>C +39.12</u>	J0334.2+3915*			FRI/BLL?	2.11 ± 0.17
TXS 0348+013	$J0351.1 + 0128^*$			SSRQ	2.43 ± 0.18
3C 111	J0418.5+3813		J0419.0+3811	FRII	2.79 ± 0.08
Pictor A	$J0519.2 - 4542^*$			FRII	2.49 ± 0.18
PKS 0625-35	J0627.0-3529*	$J0627.1 - 3528^*$	$J0627.3 - 3530^*$	FRI/BLL	1.87 ± 0.06
4C +52.17	J0733.5+5153			agn	1.74 ± 0.16
NGC 2484	J0758.7+3747*			FRI	2.16 ± 0.16
4C +39.23B	J0824.9 + 3916			CSS	2.44 ± 0.10
3C 207	$J0840.8 + 1315^*$	J0840.7+1310	J0840.8+1310	SSRQ	2.47 ± 0.09
SBS 0846 + 513	$J0849.9 + 5108^*$			NLSy1	2.28 ± 0.04
3C 221	J0934.1+3933			SSRQ	2.28 ± 0.12
PMN J0948+0022	J0948.8+0021*	$J0948.8 + 0020^*$	$J0949.0+0021^*$	NLSy1	2.32 ± 0.05
PMN J1118-0413	J1118.2-0411*			agn	2.56 ± 0.08
B2 1126+37	J1129.0+3705			agn	2.08 ± 0.13
3C 264	J1145.1+1935*			FRI	1.98 ± 0.20
PKS 1203+04	J1205.4 + 0412			SSRQ	2.64 ± 0.16
M 87	$J1230.9+1224^*$	$J1230.8+1224^*$	J1230.8+1223*	FRI	2.04 ± 0.07
3C 275.1	J1244.1+1615			SSRQ	2.43 ± 0.17
GB 1310+487	$J1312.7 + 4828^*$	$J1312.8 + 4828^*$	$J1312.4 + 4827^*$	agn	2.04 ± 0.03
Cen A Core	$J1325.4 - 4301^*$	J1325.6 - 4300	J1325.6 - 4300	FRI	2.70 ± 0.03
Cen A Lobe	J1324.0 - 4330e	J1324.0 - 4330e	J1322.0 - 4515	FRI	2.53 ± 0.05
3C 286	J1330.5+3023*			SSRQ/CSS	2.60 ± 0.16
Cen B	J1346.6 - 6027	J1346.6 - 6027		FRI	2.32 ± 0.01
Circinus	J1413.2-6518			Seyfert	2.43 ± 0.10
3C 303	$J1442.6+5156^*$			FRII	1.92 ± 0.18
PKS 1502+036	J1505.1+0326*	$J1505.1+0324^*$	J1505.0+0328*	NLSy1	2.61 ± 0.05
TXS 1613-251	J1617.3 - 2519	J1617.6 - 2526c		agn	2.59 ± 0.10
PKS 1617-235	$J1621.1 - 2331^*$	$_{\rm J1620.5-2320c}$		agn	2.50 ± 0.23
NGC 6251	$J1630.6 + 8232^*$	J1629.4 + 8236	$J1635.4 + 8228^*$	FRI	2.22 ± 0.08
3C 380	$J1829.6 + 4844^*$	$J1829.7 + 4846^*$	$J1829.8 + 4845^*$	SSRQ/CSS	2.37 ± 0.04
PKS 2004-447	J2007.8-4429*	J2007.9-4430*	J2007.9-4430*	NLSy1	2.47 ± 0.09

Allows the contribution of blazars to the diffuse gamma-ray background to be estimated

Krakow 04/23/15

Benoît Lott

Spectral photon index vs v_{peak}

Space Telescope

Synergy with neighboring bands

Ч У

- 55 out of 56 TeV AGNs in 3LAC 28 found to be variable
- 96 3LAC AGNs in the V38 INTEGRAL Cat.

Table 10. Properties of the VHE AGN detected by the Fermi LAT.

VHE Name	3FGL Name	Source Class	SED Type	Redshift	Spectrum Type ^a	1FGL/1FHL ^b
SHBL J001355.9-185406	J0013.9-1853	BL Lac	HSP	0.095	PL	
KUV 00311-1938	J0033.6-1921	BL Lac	HSP	>0.51	PL	н
RGB J0136+391	J0136.5+3905	BL Lac	HSP		PL	н
RGB J0152+017	J0152.6+0148	BL Lac	HSP	0.08	PL	Y
3C 66A	J0222.6+4301	BL Lac	ISP	0.3347 < z < 0.41	LP	Y
1ES 0229+200	J0232.8 + 2016	BL Lac	HSP	0.139	PL	
PKS 0301-243	J0303.4-2407	BL Lac	HSP	0.26	PL	Н
IC 310	J0316.6+4119	Radio Gal	HSP	0.018849	PL	Y
RBS 0413*	J0319.8+1847	BL Lac	HSP	0.19	PL	Y
NGC 1275*	J0319.8+4130	Radio Gal	ISP	0.018	LP	Y
1ES0347 - 121	J0349.2-1158	BL Lac	HSP	0.188 (?)	PL	
1ES0414+009	J0416.8+0104	BL Lac	HSP	0.287	PL	Y
PKS 0447-439	J0449.4-4350	BL Lac	HSP	0.205	PL	Y
1ES 0502+675*	J0508.0+6736	BL Lac	HSP	0.341	PL	Y
PKS 0548-322	J0550.6 - 3217	BL Lac	HSP	0.069	PL	Н
1ES 0647+250	J0650.7 + 2503	BL Lac	HSP		PL	н
RGB J0710+591 (1H 0658+595?)	J0710.3 + 5908	BL Lac	HSP	0.125	PL	Y
S50716+714	J0721.9 + 7120	BL Lac	ISP	0.2314 < z < 0.27	LP	Y
1ES 0806 + 524	J0809.8 + 5218	BL Lac	HSP	0.138	PL	Y
RX J0847.1+1133 (RBS 0723)	J0847.1+1134	BL Lac	HSP	0.199	PL	
1RXS J101015.9-311909	J1010.2-3120	BL Lac	HSP	0.143	PL	Н
1ES 1011+496	J1015.0+4925	BL Lac	HSP	0.212	PL	Y
1ES 1101 - 232	J1103.5-2329	BL Lac	HSP	0.186	PL	Y
Markarian 421	J1104.4+3812	BL Lac	HSP	0.031	PL	Y
Markarian 180	J1136.6+7009	BL Lac	HSP	0.046	PL	Y
1ES 1215+303	J1217.8+3007	BL Lac	HSP		PL	Y
1ES 1918-1304	11991.3 ± 3010	RL Lac	UCD	0.189	PI.	v

Preliminary

Derml

Gamma-ray Space Telescope

- slightly higher z for new FSRQs relative to 2LAC ones <z>=1.33 vs. 1.17
- maximum redshift still z=3.1
- 295/604 BL Lacs have no measured redshifts (55%, 61%, 40%) for (LSPs, ISPs and HSPs)
- 134 constraints from Shaw et al. (2013)
- Redshift limits for BL Lacs not compatible with measured redshifts: measured redshifts are biased low.

Are many BL Lacs FSRQs with emission lines swamped by the non-thermal continuum?

Blazar luminosity functions

- Rise in HSP-BL Lac density corresponds to a drop-off in FSRQ density
- Evolution of FSRQS into HSPs due to starvation of accreting mattter?

Dermi

Gamma-ray Space Telescope

Benoît Lott

Feature first seen in 3C 454.3 91 FSRQs, 32 BL Lacs, 8 BCUs show significant spectral curvature

Abdo +09, Poutanen & Stern 10, 14, Cerruti+13, Dermer+14, Finke & Dermer 13, Hunger & Reimer 15 Kohler & Nalewajko 15

•γγ-absorption

superposition of different EC components superposition of different flares

intrinsic curvature of electron energy distribution

Variability

• Variability index distributed as a χ^2 with 47 d.o.f. for non-variable sources.

Variability

- Fractions of sources showing significant variability
 FSRQs: 69% BL Lacs: 23% (39%, 23%, 15%) for (LSP, ISP, HSP)
- The LAT samples different parts of the high-energy hump for the different classes.
- Monthly light curves to be extended beyond 48 months, continuously updated and posted on the ASDC site

HSP BL Lac

0.395 < z < 0.62 one of the brightest BL Lacs in the X-ray band TeV source (HESS, MAGIC)

Indication for a periodic behavior in •the radio (15 GHz) •the optical (R-band) •the LAT band

Autocorrelation gives a peak at 750 days

Interpretation:

binary black hole?warped disk?other?

Shortest timescales

Constraints on size and location of emitting zone

4 sources show T_{min} close to 3 hr: 3C 454.3, 3C 273, 4C+21.35, PKS 1510-089 $R_{s}/c\sim10^{4} M_{9} s$

Binned light curves unsuitable to derive T_{\min} accurately

Unbinned maximum-likelihood method $F = 2F_0(e^{(t_0-t)/T_r} + e^{(t-t_0)/T_f})^{-1}$

Sub-hour variability (<20 min) is found for 3C454.3 and PKS 1510-089

Shortest timescales

Constraints on size and location of emitting zone

4 sources show T_{min} close to 3 hr: 3C 454.3, 3C 273, 4C+21.35, PKS 1510-089 $R_{s}/c\sim10^{4} M_{9} s$

Binned light curves unsuitable to derive T_{min} accurately

Unbinned maximum-likelihood method $F = 2F_0(e^{(t_0-t)/T_r} + e^{(t-t_0)/T_f})^{-1}$

Sub-hour variability (<20 min) is found for 3C454.3 and PKS 1510-089

Correlations between Luminosity and Spectral Features

Krakow 04/23/15

Krakow 04/23/15

Benoît Lott

Gamma-ray loud vs. gamma-ray quiet blazars

Connection between 3LAC and BZCat

- gamma-ray sources slightly brighter than average in other bands,
- large overlap in distributions between gamma-ray loud and quiet blazars

Dermi

Gamma-ray Space Telescope

Radio-gamma-ray connection

High-energy blazars

Krakow 04/23/15

Benoît Lott

Ν

Second Fermi Hard-Source List (2FHL) ace Telescope

6 years of Pass8 data at E > 50 GeV increase in Aeff of 25%, in PSF of 20% at 50GeV (50% at 500GeV)

amma-rav

- 51,000 photons E> 50 GeV ~ 1 ph /deg 2 (EGRET: 1500 ph E>10 GeV) 18,000 photons E>100 GeV 2,000 photons E>500 GeV
- Fills the gap between Cherenkov ground-based observations and GeV all sky survey

Gamma-ray Space Telescope

Second Fermi Hard-Source List (2FHL)

Detections

- 320 sources
- 71 detected by ACTs (TeVCat)
- 249 not detected by ACTs
- 206 in 1FHL
- 60 new sources

INTANOW UTILOITS

Benoît Lott

Preliminary

The 3LAC is a signicant improvement over 2LAC, with 71% more sources.

General trend: FSRQs \rightarrow BL LSPs \rightarrow BL ISPs \rightarrow BL HSPs for redshift, photon index, spectral curvature, variability...

The LAT average photon index is a robust parameter, well correlated with blazar class. Interesting correlations discovered.

Assesment of shortest variability timescales is hampered by the LAT survey mode, but there are strong indications of subhour timescales.

First evidence for a periodic oscillation in the GeV range.

On-going/future efforts: 2FHL

4LAC (~6 years of data, Pass8)

Backup slides

Spectral photon index

- Little overlap between FSRQs and **BL Lacs**
- New FSRQs slightly softer than 2LAC ones: (<Γ>=2.53 vs. 2.41), not so for BL Lacs
- Lowest index~1.5, as predicted by shock-acceleraton models
- BCUs index distribution straddling the two classes' and extending beyond 2.5

- EGB total intensity of 1.1×10⁻⁵ ph cm⁻² s⁻¹ sr⁻¹
- Blazars contribute a grand-total of (5-7)× 10⁻⁶ ph cm⁻² s⁻¹ sr⁻¹
- Resolved sources : ~4× 10⁻⁶ ph cm⁻² s⁻¹ sr⁻¹

- Unresolved blazars: ~(2-3)×10⁻⁶ ph cm⁻² s⁻¹ sr⁻¹ (in agreement with Blazars, Star-forming galaxies and radio galaxies can explain the intensity and the spectrum of the EGB

