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Outline

• Time domain studies of AGN jets with 
the MOJAVE VLBA survey

• Statistical trends and implications for 
TeV blazars

• Kpc-scale radio structure of blazar jets
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MOJAVE VLBA Program

• Regular observations of radio-bright AGN
– VLBA Key Science project

• 24 hour observing session every 
month

– cadences tailored to individual jets

• Milliarcsec-resolution images at 15 
GHz

– continuous time baselines on many 
sources back to 1994

– full polarization since 2002

Blazar 0003-066 at 15 GHz

Colors: fractional linear polarization
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Investigating Fermi blazar jets

• Fermi is an excellent AGN survey 
instrument:

● broadband coverage, sees jet flux 
only,  no contamination from host 
galaxy

• Quasars (red points) have 
low-spectral peaked SEDs

• IC scattering of broad line region 
photons quenches high energy 
electron population in the jet

• Highest spectral peaked (HSP) 
jets are of the less powerful BL 
Lac class (no broad line region)

HSP

LSP
ISP

X-ray

Radio
Fermi LAT Collab, 2012, ApJ  743, 171
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MOJAVE AGN Monitoring Samples

1.5 Jy :  
all AGN above δ = -30° known to have exceeded 1.5 Jy in 
15 GHz VLBA flux density (1994.0  - 2010.0;  Lister et al. 
2013, AJ 146, 120).

Low-luminosity : 
representative sample of 43  AGN with 15 GHz 

luminosity below 1026  W Hz-1 selected  from the Radio 
Fundamental Catalog http://astrogeo.org/rfc/.

1FM γ-ray : 
complete Fermi-selected AGN sample above 100 MeV 
(Lister et al. 2011,  ApJ 742,27).

Hard Spectrum : 
representative sample of hard γ-ray spectrum, radio 
bright AGN from Fermi 2-year catalog

http://astrogeo.org/rfc/
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Prior

Coverage of radio/γ-ray flux plane

γ-ray

Radio



Mrk 501

203 ± 18 μas/y

106 ± 20 μas/y

Most Recent MOJAVE Kinematics 
Analysis

• 4366 VLBA epochs of 200 
AGNs from 1994 Sept - 2011 
May. 

• Gaussian models fit to 
visibilities at each epoch.

• Image restoring beam: 

~0.5 to 1 mas
• Image sensitivity: 

0.1 - 0.3 mJy/beam
• Positional rms accuracy:

 0.05 - 0.1 mas

Probing  jet kinematics and polarization in region 10-1000 pc 
(de-projected) from central engine.

Krakow,  April 2015

Lister et al. 2013, AJ 146, 120

Homan et al. 2015, ApJ 798,134
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• Peaked at low values
● only 2 jets with βapp > 30
● high Γ jets are very rare 

in blazar parent 
population

• Lorentz factors of the 
most 
luminous/powerful 
jets range up to ~50

• The typical AGN jet is 
weak and has a 
Lorentz factor of only 
~ a few

Overall Jet Speed Distribution

Lister et al. 2013, AJ 146, 120
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Apparent Inward Motions

Statistics:
– Rare: only 2% of all moving features
– Seen in only 10 of 200 jets  (6 of these are BL Lac jets)

Possible causes:
– Accelerated motion across the line of sight
– Inward pattern speed (e.g., reverse shock)
– Misidentification of true core feature

Core

1458+71
8
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Slow Pattern Speeds

• Defined as:
–  < 20 µas/y ,
–  non-accelerating ,
–  < 1/10th of max 

speed seen in the 
jet

•. Only 4% of all 
features

•. Found in 10% of 
quasar jets and 
25% of BL Lacs

M87

2134+00
4



Krakow,  April 2015

Speed Dispersion Within the Jet

• An AGN jet typically 
contains features 
with a range of bulk 
Lorentz factor and/or 
pattern speed

• Characteristic 
median speed exists 
for each jet

Normalized speed distribution within 12 jets 
each having at least 10 moving features.
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MOJAVE Jet Acceleration Study

• Homan et al.  2015 (ApJ 798,134) 
analyzed 329 features in 95 blazar jets

• All features had at least ten VLBA 
epochs.

• Analyzed accelerations in directions || 
and ⊥ to apparent motion vector.
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• No perpendicular acceleration is expected in cases of changes in speed 
along a straight trajectory.

• If jet features are moving with constant speed on a curved trajectory, 
should expect to see accelerations both parallel and perpendicular to 
mean velocity vector.

= velocity vector
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AGN Jets are Accelerating

• 75% of the jets studied have at least 
one accelerating feature.

• Half of all the jet features show 
significant acceleration.

• Parallel accelerations are of larger 
magnitude and more prevalent than 
perpendicular accelerations.

• Results confirmed at 8 GHz in AGN 
sample of Piner et al. 2012 ApJ 758, 84
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Evidence for changing Lorentz 
factors
• Overall statistics show that 

observed accelerations cannot be 
solely due to bending

● most features have a high || / ⊥ 
acceleration ratio.

• Positive parallel accelerations are 
most common within 10 pc of the 
core

• Features tend to speed up near the 
core, and slow down at ~ 100 pc 
(deprojected) farther downstream.

• Changes in Lorentz factor must be 
the primary cause of the observed 
accelerations.

Outward 
a||

Inward 
a||

Projected Distance [pc]

Average 
a||

No measurable 
accel.
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Rate of Jet Speed Changes
Inner jet:

10-3 to 10-2  per y 
(rate is slower in the jet frame)

 At > 100 pc downstream:
-10-3 per y;  enough to 
completely decelerate the jet 
by ~100 kpc, but ISM density 
drops off

 

Cygnus 
A

BL 
Lacertae

1928+7
38
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Curved Motions

Proper 
motion 
vector 
direction (φ)

Mean position angle of 
the jet feature over 
time  (<υ>)

• A jet feature is 
non-radial if its 
proper motion 
doesn’t point 
back to the jet 
core.

Core

• Half of all the jet 
features are 
non-radial.

• Many trajectories 
are highly curved 
on the sky.
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MOJAVE Time Lapse: 20 yr of Quasar 0738+313 
at z = 0.6

50 
pc
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Inner Jet Collimation

• Proper motion vector 
directions within ~50 pc 
(deprojected) of jet core 
indicate collimation.

• No apparent collimation 
seen further out. (Major 
exception:  3C 279 in 
1999 ; Homan et al.  
2003)
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Inner Jet Orientation Variations

• Analyzed 60 jets with 12-15 
years of VLBA coverage

• Half show significant changes in 
inner jet position angle, up to 
several degrees/yr ;  possible 
sinusoidal variations; large jumps 
also occur

• Jets of weak-lined blazars (BL 
Lacs) typically show smaller 
variations than quasars

Lister et al. 2013, AJ 146, 120



Krakow,  April 2015 22

• Newly ejected jet features move out on 
successively different trajectories

• At any given time, typically only a portion of the 
full (conical) outflow is energized/visible in a  
VLBA image

Stacked image: 1995-2009Quasar jet image: 2009

Energized Jet Channels
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Statistical Trends
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Jet Speed vs. 15 GHz Luminosity

Li = 3 x 1024  W
 

150 m
Jy, 3

 m
as/y

Only the most luminous jets can attain high Lorentz factors
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Jet Speed vs. Cosmic Distance

Two kinds 
of TeV 
AGN



3C 84

3C 273

3C 279

IC 310
NGC 1052

M87
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HSP AGN lie at faint 
end of blazar radio 
luminosity function

Radio Jet Luminosity vs. Cosmic 
Distance
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Jet Speed vs. Synchrotron Peak 
Frequency

More AGN 
speed data yet 
to come
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The HSP Doppler Beaming Crisis
• Extreme variability of TeV 

Ɣ-rays imply very small 
emission regions

• Ɣ-rays suffer huge pair losses 
unless HSP jets have very 
high beaming factors

40 min.

• Possible explanations:
● Fast spine / slow sheath structure (e.g., Tavecchio et al. 2008)
● Reconnection regions or misaligned ‘mini-jets’  (Giannios et al. 2010,2013)
● Fast leading edges of intermittent outflows (Lyutikov & Lister 2010)

2155-30
4
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 Lower VLBI brightness temp. and variability of 
HSP radio cores are indicative of low radio 
relativistic beaming factors

Relativistic Beaming Levels
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Ramifications of a Very Fast-TeV 
Jet Spine• Let’s assume   , which implies
 viewing angle < 0.6º          (

●  Lorentz factor > 50           ( 

• Large flux-limited jet surveys will always include some jets with 
 (Lister et al. 1997),  so fast spine model implies:

● TeV emitting region is much faster than all known radio jets
● Bright TeV jet population is heavily orientation biased
● Parent TeV jet population must be very large
● TeV-emitting jet region has to be intrinsically radio weak
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“Sometimes the fast spine is invisible since it is beamed away from you”
 works only if jet viewing angle > 10º or spine δ >> 100

Γspine

δspin
e  
δshe
ath
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Radio Jets of HSPs in Fast Spine 
Scenario
•Pc-scale radio jets have intrinsic opening angles ~ 1°to 
2°(Pushkarev et al., arXiv 1205.0659).
●radio jet viewing angle of an HSP would have to be  3°
●implies (well inside 1/  cone)

•VLBI core brightness temperatures, one-sided morphology, 
and radio variability all indicate .

•Radio jets of HSP AGNs would therefore have
  and     W Hz-1     (unbeamed)

•This puts them at the very low end of the intrinsic 
luminosity range for blazar jets.
 kpc-scale radio emission should be weak & 

foreshortened
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MOJAVE Kpc-Imaging Campaigns

• VLA imaging of 300 MOJAVE 
AGN in A and B 
configurations at 1.4 and 5 
GHz (Ethan Stanley, Ph.D.  
thesis)

• LOFAR imaging of MOJAVE 
1.5 Jy sample (Jonas 
Trüstedt,  Ph.D. thesis)

● using international 
baselines to achieve 1 
arcsec resolution at 140 
MHz

● 610 MHz GMRT 
observations have also 
been proposed

LOFAR image of giant 
radio halo of ISP BL 
Lac 1807+698 
courtesy Jonas Trϋstedt 

LAS = 240 
kpc
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Deprojected size   

LAS = 90 kpc

Mrk 421

LAS = 50 
kpc

Mrk 501

Deprojected size   500  kpc  Deprojected size  900  kpc  

>500 kpc is considered a ‘giant’ radio galaxy (see 
Machalski et al. ApJ 679, 149 and poster upstairs)

Machalski & Condon 
1985

Cassaro et al. 1999
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Summary

• The MOJAVE program has revealed important aspects of AGN 
jets:

– the most powerful blazar jets have a wide range of Lorentz 
factors up to ~50,  while typical AGN jets have Lorentz factors 
of ~a few.

– jet features are speed up within ~50 pc of the jet base where jet 
is still collimating,  and decelerate further out

– at any given time, only a small portion of a broader pc-scale 
conical outflow is highly energized  be careful interpreting 
single-epoch images

– a very fast-spine interpretation for TeV HSPs would imply that 
they have very weak and slow radio jets at implausibly small 
viewing angles. 

• MOJAVE VLA and LOFAR campaigns are also investigating 
kpc-jet morphology and trends between pc-scale properties 
and jet powerwww.astro.purdue.edu/MOJAVE
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Backup slides
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Superluminal Narrow-Lined 
Seyfert I Jets

• 3 of 4 NLSY1 in MOJAVE  have 
vapp > 6 c

• Pc-scale radio jets similar to LSP 
BL Lacs

• Low detection #s may indicate 
young jets (Foschini et al. 2014) 

v/c = 11 ± 2 

1H 0323+342

• NLSY1 have high low 
black hole mass and 
near-Eddington 
accretion rate

• Rare sub-population (< 
7%) are radio loud, 
and a scarcer few are 
γ-ray loud

• Likely hosted in spirals

0846+513
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Trackable features in jets of TeV 
AGN?
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Trackable features in jets of  TeV 
AGN?

Jet motion is  < 60 μas/y ( 0.8 c )
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Extended Jet Power

• MOJAVE VLA campaign in 
2007 revealed trend 
between apparent speed 
and extended lobe emission

• Are the kinetic powers of 
high and low-spectral 
peaked BL Lacs consistent 
with the predictions of the 
unified model?

• What are the implications for 
the Doppler beaming crisis? 

Kharb et al. 2010, ApJ 710,  
764
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Blazar Flavors: Quasars and BL 
Lacs

Quasars:
– broad optical emission 

lines
– high power jets seen 

end-on
– synchrotron peak in 

infrared BL Lacertae objects:
● weak/absent broad 

emission lines
● low power jets seen 

end-on
● synchrotron peaks range 

from infrared to 
optical/UV

FR II jet

FR I jet

Palma et al. 

AUI/NRAO 

AGN

AGN

Hotspot

Hotspot

(low power)

(high power)
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Current BL Lac Paradigm

• Lower jet power implies low accretion rate onto 
black hole:

–  inflow radiates inefficiently,  thus no optically 
thick accretion disk or broad line region 

• No broad line photons are available for external 
Compton scattering

–  less Compton cooling of synchrotron electrons
–  synchrotron can peak up to optical/UV regime

43
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Are these trends solely due to jet 
bending?Predictions: 
● no inward/outward acceleration trend 
expected with distance

● parallel accelerations should be ~60% 
magnitude of ⊥ accelerations

● features with large parallel accelerations 
should also show large perpendicular 
accelerations

• Most features have a high || / ⊥ 
acceleration ratio.

• Speed increase/decrease trend 
is more evident in these 
features.
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Acceleration Down the Jet

• Features tend to speed up near the core, 
and slow down at ~ 100 pc (deprojected) 
farther downstream.

Outward  
parallel 
accelerations

Inward  
parallel 
acceleration
s
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Do the observed motions reflect 
the underlying jet flow?

• Any intrinsic shock speeds are added relativistically to the flow speed.

• Broad statistical trends in MOJAVE jets are impossible to reproduce 
with a random collection of inward & outward moving shocks.

Red: inward acceleration
Blue: outward acceleration
Black: no significant 
acceleration
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• In most cases a constant acceleration model provides a 
good fit to the observed motions
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• Some of the best-sampled features, however,  show variable 
acceleration
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• 50% of jets show no trend/changes in position 
angle with time

• 43% show monotonic swings in position angle
– Typically 1 to 3 degrees per year
– Fastest case: quasar NRAO 150  (9.8 ± 1 

degrees per y!) 

NRAO 
150
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• Many of the features 
move on complex 
curved trajectories and 
most are accelerating 
(non-ballistic)

Jet Accelerations

 Trajectory on sky

Distance vs. time

(world line)
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MHD Plasma Waves in BL Lacertae
M. Cohen et al.  ApJ, 2014, 2015
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Jet Speed vs. Luminosity Distance
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• No examples of fast, low-synchrotron luminosity features.
• Only the most luminous jets can attain high Lorentz factors

Γ= 30, 
L = 1023 W 
Hz-1
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Quasar 
3C279• z = 0.54

• Very bright jet 
feature emerged in 
early 1980s

• In early 1998: 
feature brightened 
and accelerated 
from 8c to 13c

• New motion vector is 
in the direction of 
the kpc-scale jet. 

MOJAVE Time Lapse• Jet is undergoing collimation due to a sudden 
change in external gas pressure in the host 
galaxy (Homan et al. 2003)
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• Linear (I) and circular (II) polarization
• Kiloparsec radio (III, Kharb et al. 2010) and X-ray (Hogan 

et al. 2011) 
• Parent population and luminosity function (IV)
• Faraday rotation measure (VII) and spectral index maps 

(XI)
• Nuclear opacity and magnetic fields (IX)
• Morphology and compactness (I,V, Homan et al. 2005)
• Kinematics (V, VI, VII, X, XI)
• Optical properties (Torrealba et al. 2012,; Arshakian et 

al. 2010, 2012)
• Gamma-ray properties (Lister et al. 2009, 2011, 

Pushkarev et al. 2010,  Savolainen et al. 2010, Kovalev 
et al. 2009)

Roman numerals refer to MOJAVE paper series, full 
list  at
http://www.astro.purdue.edu/MOJAVE
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MOJAVE Studies of AGN Jets
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• BL Lacs and radio galaxies show clear trend of increasing speed down the jet.
• Situation unclear for quasars, but we can directly measure the accelerations.
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Kinematic Fits

• Two-dimensional sky vector motion fits made to 887 
bright features in 200 different AGN jets.

● all features tracked over at least five VLBA epochs
● many tracked for more than 10 years
● optically thick jet ‘core’ used as a stationary reference 

point
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Inner jet position angle changes are primarily 
driven by the emergence of new bright 
features

Initial sky position angle of new 
jet features in the quasar 
1222+216
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• Sinusoid-like jet position angle variations seen in 
20% of jets

• Variations are too slow (decade-long) to claim 
periodicity (yet!)
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Acceleration of Non-Radial 
Features

Proper motion 
vector direction 
(φ)

Mean position angle 
of jet feature over 
time  (<υ>)

• Define a main jet axis direction based on stacked-epoch 
images.

• Most off-axis features have accelerations that are 
steering them back towards the jet axis.

• We are seeing jet 
collimation at scales up 
to 50 pc

jetPA
Acceleration
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