Long Term Kinematic Behavior of Parsec Scale Blazarslets

Dept. of Physics & Astronomy

Purdue University, USA

Outline

- Time domain studies of AGN jets with the MOJAVE VLBA survey
- Statistical trends and implications for TeV blazars
- Kpc-scale radio structure of blazar jets

MOJAVE Collaboration

- M. Lister (P.I.), J. Richards, E. Stanley, M. Hodge (Purdue, USA)
- T. Arshakian U. Cologne, Germany
- M. and H. Aller (U. Michigan, USA)
- M. Cohen (Caltech, USA)
- D. Homan (Denison, USA)
- M. Kadler, J. Trüstedt (U. Wurzburg, Germany)
- K. Kellermann (NRAO, USA)
- Y. Y. Kovalev (ASC Lebedev, Russia)
- J. A. Zensus (MPIfR, Germany)
- A. Pushkarev (Crimean Observatory)
- E. Ros (MPIfR, Germany & U. Valencia, Spain)
- T. Savolainen, T. Hovatta (Metsăhovi Obs., Finland)

The MOJAVE Program is supported under NASA Fermi Grant NNX12A087G Monitoring Of Jets in Active Galaxies with VLBA Experiments

Very Long Baseline Array

MOJAVE VLBA Program

- Regular observations of radio-bright AGN
 - VLBA Key Science project
 - 24 hour observing session every month
 - cadences tailored to individual jets
 - Milliarcsec-resolution images at 15 GHz
 - continuous time baselines on many sources back to 1994
 - full polarization since 2002

Blazar 0003-066 at 15 GHz

Colors: fractional linear polarization

Investigating Fermi blazar jets

- *Fermi* is an excellent AGN survey instrument:
 - broadband coverage, sees jet flux only, no contamination from host galaxy
 - Quasars (red points) have low-spectral peaked SEDs
 - IC scattering of broad line region photons quenches high energy electron population in the jet
 - Highest spectral peaked (HSP) jets are of the less powerful BL Lac class (no broad line region)

MOJAVE AGN Monitoring Samples

1.5 Jy :

all AGN above $\delta = -30^{\circ}$ known to have exceeded 1.5 Jy in 15 GHz VLBA flux density (1994.0 - 2010.0; Lister et al. 2013, AJ 146, 120).

Low-luminosity :

representative sample of 43 AGN with 15 GHz luminosity below 1026 W Hz-1 selected from the Radio Fundamental Catalog <u>http://astrogeo.org/rfc/</u>.

1FM y-ray :

complete *Fermi*-selected AGN sample above 100 MeV (Lister et al. 2011, ApJ 742,27).

Hard Spectrum :

representative sample of hard γ -ray spectrum, radio bright AGN from Fermi 2-year catalog

Coverage of radio/y-ray flux plane

Most Recent MOJAVE Kinematics Analysis

- 4366 VLBA epochs of 200 AGNs from 1994 Sept - 2011 May.
- Gaussian models fit to visibilities at each epoch.
- Image restoring beam:
 ~0.5 to 1 mas
- Image sensitivity:
 0.1 0.3 mJy/beam
- Positional rms accuracy: 0.05 - 0.1 mas

Homan et al. 2015, ApJ 798,134

Probing jet kinematics and polarization in region 10-1000 pc (de-projected) from central engine.

Overall Jet Speed Distribution

- Peaked at low values
 - only 2 jets with $\beta app > 30$
 - high Γ jets are very rare in blazar parent population
- Lorentz factors of the most luminous/powerful jets range up to ~50
- The typical AGN jet is weak and has a Lorentz factor of only
 Krakon, freew 2015

Lister et al. 2013, AJ 146, 120

Apparent Inward Motions

Statistics:

- Rare: only 2% of all moving features
- Seen in only 10 of 200 jets (6 of these are BL Lac jets)

Possible causes:

- Accelerated motion across the line of sight
- Inward pattern speed (e.g., reverse shock)
- Misidentification of true core feature

Slow Pattern Speeds

- Defined as:
 - < 20 μas/y ,
 - non-accelerating,
 - < 1/10th of max speed seen in the jet
 - •. Only 4% of all features
 - Found in 10% of quasar jets and 25% of BL Lacs

Speed Dispersion Within the Jet

- An AGN jet typically contains features with a range of bulk Lorentz factor and/or pattern speed
- Characteristic median speed exists for each jet

Normalized speed distribution within 12 jets each having at least 10 moving features.

MOJAVE Jet Acceleration Study

- Homan et al. 2015 (ApJ 798,134) analyzed 329 features in 95 blazar jets
- All features had at least ten VLBA epochs.
- Analyzed accelerations in directions || and \perp to apparent motion vector.

North in Sky Plane

- No perpendicular acceleration is expected in cases of changes in speed along a straight trajectory.
- If jet features are moving with constant speed on a curved trajectory, should expect to see accelerations both <u>parallel</u> and <u>perpendicular</u> to mean velocity vector.

AGN Jets are Accelerat

- 75% of the jets studied have at least one accelerating feature.
- Half of all the jet features show significant acceleration.
- Parallel accelerations are of larger magnitude and more prevalent than perpendicular accelerations.
- Results confirmed at 8 GHz in AGN sample of Piner et al. 2012 ApJ 758, 84

Relative Right Ascension (mas)

Evidence for changing Lorentz factors

- Overall statistics show that observed accelerations cannot be solely due to bending
 - most features have a $high \mid\mid \ / \perp$ acceleration ratio.
- Positive parallel accelerations are most common within 10 pc of the core
- Features tend to speed up near the core, and slow down at $\sim 100 \text{ pc}$ (deprojected) farther downstream.
- Changes in Lorentz factor must be the primary cause of the observed accelerations.

Rate of Jet Speed Changes

Krakow, April 2015

Curved Motions

 A jet feature is **non-radial** if its proper motion doesn't point back to the iet

- Half of all the jet features are non-radial.
- Many trajectories are highly curved on the sky

MOJAVE Time Lapse: 20 yr of Quasar 0738+313 at z = ^ ^

Krakow, April 2015

Inner Jet Collimatio

- Proper motion vector directions within ~50 pc (deprojected) of jet core indicate collimation.
- No apparent collimation seen further out. (Major exception: 3C 279 in 1999; Homan et al. 2003)

Inner Jet Orientation Variations

- Analyzed 60 jets with 12-15 years of VLBA coverage
- Half show significant changes in inner jet position angle, up to several degrees/yr; possible sinusoidal variations; large jumps also occur
- Jets of weak-lined blazars (BL Lacs) typically show smaller variations than quasars

Lister et al. 2013, AJ 146, 120

Energized Jet Channels

- Newly ejected jet features move out on successively different trajectories
- At any given time, typically only a portion of the full (conical) outflow is energized/visible in a VLBA image

Statistical Trends

Jet Speed vs. 15 GHz Luminosity

Jet Speed vs. Cosmic Distance

Krakow, April 2015

Krakow, April 2015

Jet Speed vs. Synchrotron Peak

The HSP Doppler Beaming Crisis

- Y-rays suffer huge pair losses unless HSP jets have very high beaming factors

Aharonian et al. 2007 (H.E.S.S. Collaboration)

- Possible explanations:
 - Fast spine / slow sheath structure (e.g., Tavecchio et al. 2008)
 - Reconnection regions or misaligned 'mini-jets' (Giannios et al. 2010,2013)
 - Fast leading edges of intermittent outflows (Lyutikov & Lister 2010)

Relativistic Beaming Levels

Krakow, April 2015

Ramifications of a Very Fast-TeV

- Let's assume $\delta_{TeV} > 100$, which implies
 - → viewing angle < 0.6° $(\sin \theta < 1/\delta)$ → Lorentz factor > 50 $(\Gamma > \delta/2)$
- Large flux-limited jet surveys will always include some jets with $\Gamma \sim \Gamma_{max}$ (Lister et al. 1997), so fast spine model implies:
 - TeV emitting region is <u>much faster than all known radio jets</u>
 - Bright TeV jet population is heavily orientation biased
 - Parent TeV jet population must be very large
 - TeV-emitting jet region has to be <u>intrinsically radio weak</u>

 $\Gamma_{\text{sheath}} = 2$

"Sometimes the fast spine is invisible since it is beamed away from you" works only if jet viewing angle > 10° or spine δ >> 100

Radio Jets of HSPs in Fast Spine

- Pc-scale radio jets have intrinsic opening angles ~ 1° to 2° (Pushkarev et al., arXiv 1205.0659).
 - radio jet viewing angle of an HSP would have to be $\lesssim 3^{\circ}$
 - implies $\Gamma_r \leq \delta_r/2$ (well inside 1/ Γ_r cone)
- VLBI core brightness temperatures, one-sided morphology, and radio variability all indicate $3 \leq \delta_r \leq 10$.
- Radio jets of HSP AGNs would therefore have: $1.5 \leq \Gamma_r \leq 5$ and $10^{21} \leq L_r \leq 10^{24}$ W Hz⁻¹ (unbeamed)
- This puts them at the <u>very low end</u> of the intrinsic luminosity range for blazar jets.

 \rightarrow kpc-scale radio emission should be weak & foreshortened

MOJAVE Kpc-Imaging Campaigns

- VLA imaging of 300 MOJAVE AGN in A and B configurations at 1.4 and 5 GHz (Ethan Stanley, Ph.D. thesis)
- LOFAR imaging of MOJAVE
 1.5 Jy sample (Jonas Trüstedt, Ph.D. thesis)
 - using international baselines to achieve 1 arcsec resolution at 140 MHz
 - 610 MHz GMRT observations have also been proposed

LOFAR image of giant radio halo of ISP BL Lac 1807+698 courtesy Jonas Trüstedt

>500 kpc is considered a 'giant' radio galaxy (see Machalski et al. ApJ 679, 149 and poster upstairs)

Summary

- The MOJAVE program has revealed important aspects of AGN jets:
 - the most powerful blazar jets have a wide range of Lorentz factors up to ~50, while typical AGN jets have Lorentz factors of ~a few.
 - jet features are speed up within ~50 pc of the jet base where jet is still collimating, and decelerate further out
 - at any given time, only a small portion of a broader pc-scale conical outflow is highly energized __be careful interpreting single-epoch images
 - a very fast-spine interpretation for TeV HSPs would imply that they have very weak and slow radio jets at implausibly small viewing angles.
- MOJAVE VLA and LOFAR campaigns are also investigating kpc-jet morphology and trends between pc-scale properties and jet powerww.astro.purdue.edu/MOJAVE

Backup slides

Superluminal Narrow-Lined

Seyfert I Jets NLSY1 have high low black hole mass and near-Eddington accretion rate

•

Rare sub-population (< 7%) are radio loud, and a scarcer few are γ -ray loud

- 3 of 4 NLSY1 in MOJAVE have vapp > 6 c
- Pc-scale radio jets similar to LSP BL Lacs
- Low detection #s may indicate

Krakow, April 2015 young jets (Foschini et al. 2014)

Trackable features in jets of TeV AGN

Trackable features in jets of TeV

Extended Jet Power

- MOJAVE VLA campaign in 2007 revealed trend between apparent speed and extended lobe emission
- Are the kinetic powers of high and low-spectral peaked BL Lacs consistent with the predictions of the unified model?
- What are the implications for the Doppler beaming crisis?

Kharb et al. 2010, ApJ 710, 764

Blazar Flavors: Quasars and BL Lacs

Quasars:

- broad optical emission lines
- high power jets seen end-on
- synchroyron neak in

FR II jet (high power)

Hotspot

AGN Hotspot Palma et al.

FR J jesus AGN AUI/NRAO

BL Lacertae objects:

- weak/absent broad emission lines
- low power jets seen end-on
- synchrotron peaks range from infrared to

Current BL Lac Paradigm

- Lower jet power implies low accretion rate onto black hole:
 - inflow radiates inefficiently, thus no optically thick accretion disk or broad line region
- No broad line photons are available for external Compton scattering
 - less Compton cooling of synchrotron electrons
 - synchrotron can peak up to optical/UV regime

Are these trends solely due to jet bending?

- no inward/outward acceleration trend expected with
- parallel accelerations hould be $\sim 60\%$ magnitude of \perp accelerations
- features with least allel accelerations should also should also

- Most features have a **high** || / \perp acceleration ratio.
- Speed increase/decrease trend is more evident in these features.

Acceleration Down the Jet

 Features tend to speed up near the core, and slow down at ~ 100 pc (deprojected) farther downstream.

Do the observed motions reflect the underlying jet flow?

Red: inward acceleration Blue: outward acceleration Black: no significant acceleration

- Any intrinsic shock speeds are added relativistically to the flow speed.
- Broad statistical trends in MOJAVE jets are impossible to reproduce with a random collection of inward & outward moving shocks.

 In most cases a constant acceleration model provides a good fit to the observed motions

 Some of the best-sampled features, however, show variable acceleration Krakow, April 2015

- 50% of jets show no trend/changes in position angle with time
- 43% show monotonic swings in position angle
 - Typically 1 to 3 degrees per year
 - Fastest case: quasar NRAO 150 (9.8 ± 1

Jet Accelerations

 Many of the features move on complex curved trajectories and most are accelerating (non-ballistic)

Relative Declination (mas)

9

20

0

-10

1226+023, component 9

MHD Plasma Waves in BL Lacertae M. Cohen et al. ApJ, 2014, 2015

NRAO-AOC, March 6, 2015

Jet Speed vs. Luminosity Distance

Evolution of Magnetic Field Order

- No examples of fast, low-synchrotron luminosity features.
- Only the most luminous jets can attain high Lorentz factors

Quasar ·3C2749

- Very bright jet feature emerged in early 1980s
- In early 1998: feature brightened and accelerated from 8c to 13c

 Jet is undergoing collimation due to a sudden change in external gas pressure in the host galaxy (Homan et al. 2003)

MOJAVE Time Lapse

MOJAVE Studies of AGN Jets

- Linear (I) and circular (II) polarization
- Kiloparsec radio (III, Kharb et al. 2010) and X-ray (Hogan et al. 2011)
- Parent population and luminosity function (IV)
- Faraday rotation measure (VII) and spectral index maps (XI)
- Nuclear opacity and magnetic fields (IX)
- Morphology and compactness (I,V, Homan et al. 2005)
- Kinematics (V, VI, VII, X, XI)
- Optical properties (Torrealba et al. 2012,; Arshakian et al. 2010, 2012)
- Gamma-ray properties (Lister et al. 2009, 2011, Pushkarev et al. 2010, Savolainen et al. 2010, Kovalev et al. 2009)

Roman numerals refer to MOJAVE paper series, full

Krakowstaprat015

Mean Projected Distance From the Core [pc]

- BL Lacs and radio galaxies show clear trend of increasing speed down the jet.
- Situation unclear for quasars, but we can <u>directly measure the accelerations</u>.

Kinematic Fits

- Two-dimensional sky vector motion fits made to 887 bright features in 200 different AGN jets.
 - all features tracked over at least five VLBA epochs
 - many tracked for more than 10 years
 - optically thick jet 'core' used as a stationary reference point

Inner jet position angle changes are primarily driven by the emergence of new bright features

Sinusoid-like jet position angle variations seen in 20% of jets

Variations are too slow (decade-long) to claim

Acceleration of Non-Radial Features

- Features
 Define a main jet axis direction based on stacked-epoch images.
- Most off-axis features have accelerations that are steering them back towards the jet axis.
- We are seeing jet collimation at scales up to 50 pc

