Plasma injection and outflow formation in BH magnetosphere

Amir Levinson, Tel Aviv University

With Noemie Globus, Frank Rieger

Purpose of this talk

To elucidate the role of plasma injection in the magnetosphere:

- ➢ formation of a force-free structure requires sufficient charges, $n_e > n_{GJ} = ΩB/(2πec)$
 - In faint sources (e.g., M87, SgrA*) a gap may form, leading to HE magnetospheric emission.

Levinson 00,06; Neronov & Aharonian 07,08; Rieger 10; Levinson & Rieger 11

Extraction of spin down energy requires sufficiently low inertia. Properties of outflow depends on injection rate:

- below critical load, BZ process activated
- above it, outflow is powered by external energy source

Simulations by Barkov + Komissarov '08

Charge injection in AGNs

- Protons from A.F ?
- Protons from n decay ?
- e^{\pm} from $\gamma\gamma$ annihilation ?
- Other source ?

> Protons have to cross magnetic field lines. Diffusion length over accretion time is extremely small.

> Neutrons, if produced at sufficient quantities, decay over a distance 0.05 r_s – unlikely to account for charge injection.

Charge injection by $\gamma\gamma$ annihilation

- Requires sufficiently hot accretion flow that emit gamma rays
- RIAF in low luminosity sources (e.g., M87) may be hot enough
- AD in powerful blazars too cold.

Charge injection in LLAGN is a sensitive function of acretion rate (AL+ Rieger '11, Moscibrodzka + '11)

A gap must form between inner and outer LC.

May be a source of HE gamma rays

Variable TeV in M87 - gap emission? M87 - a dark outflow

AL '00, Neronov + Aharonian '07,

Powerful blazars – cyclic pp?

- No direct charge injection
- Large opacity near BH.

Self-sustained cascade ? Intermittent GeV-to-TeV emission?

Pair cascades in NS – Timokhin 2012

Loaded flows in GRBs

- $\nu\nu \rightarrow e^{\pm}$
- mass loading by neutron leakage?

Injected density >> GJ density

A model for a double transonic flow with injection Globus + Levinson '13, '14

- stationary + axi-symmetric GRMHD
- mass and energy injection included source terms: particle q_n ; energy-momentum q^{α}
- split-monopole geometry invoked
- stream function (magnetic flux) : $\Psi(\mathbf{r}, \theta)$ (assumed)
- angular velocity: Ω (a free parameter)
- particle flux per unit B flux: η
- specific energy (per baryon): ε
- specific angular momentum : L
- specific entropy : s

basic equations

$$\partial_r \left(\sqrt{-g} \rho u^r \right) = \sqrt{-g} q_n;$$
 mass injection

$$\partial_r \left(\sqrt{-g} \rho u^r \varepsilon \right) = -\sqrt{-g} q_t;$$
 energy injection

$$\partial_r \left(\sqrt{-g} \rho u^r L \right) = \sqrt{-g} q_{\varphi};$$
 Linjection

$$\partial_r \left(\sqrt{-g} \rho u^r s \right) = -\sqrt{-g} (q_\alpha u^\alpha);$$
 entropy generation

$$\partial_r \ln u_p = \frac{N(M, \Omega, \varepsilon, L, s)}{(u_p^2 - u_A^2)(u_p^2 - u_{SM}^2)(u_p^2 - u_{FM}^2)}; \quad \text{equation of motion}$$

inflow/outflow must pass through inner/outer slow and fast points

conditions on H

particle flux net energy per particle energy flux: $\varepsilon^{r} = \rho u^{r} \varepsilon^{r}$ on the horizon: $u^{r} < 0$ so: $\varepsilon_{H} < 0 \Rightarrow \varepsilon^{r} > 0$ (extraction) $\varepsilon_{H} > 0 \Rightarrow \varepsilon^{r} < 0$ (feeding)

GRBs: energy deposition by $vv \rightarrow e^-e^+$

From Zalamea & Beloborodov 2011

under-loaded vs. over-loaded flows

above critical load powered by external source

below critical load powered by BH

Regime of energy extraction

Inner Alfven point

BZ versus neutrino driven outflow

Outflow is powered by BH if

$$\dot{E}_{vv} < P_{BZ}$$

$$\Rightarrow \dot{m}_{acc} < \dot{m}_{c} = 0.1 \left(\frac{M_{H}}{3M_{\odot}}\right)^{-2/9} \left(\frac{\Psi_{B}}{10^{27} \ G \ cm^{2}}\right)^{8/9} f(a)$$

Otherwise it's driven by neutrino annihilation

- From the disk model of Chen+Beloborodov '07 we estimate $\dot{m}_c \sim 0.1$ for $B^2/(8\pi p)=0.1$

Cold flow (mass injection)

Plasma inflow on equatorial plan, $\theta = \pi/2$

Conclusions

- In faint sources a gap may form, giving rise to magnetospheric VHE emission (e.g., Tev emission from M87).
- At high injection rates two regimes are expected: below a critical load BZ process activated. Above it, flow is driven by external source.
- In GRBs a BZ jet can form if the magnetic flux is high enough.
 Otherwise, the flow is driven by neutrino annihilation.
- In AGNs, mass loading of field lines with high inclination angles may result in a nontrivial dependence of jet power on BH spin