Particle acceleration at relativistic shock waves

Martin Lemoine Institut d'Astrophysique de Paris CNRS, Université Pierre & Marie Curie

Outline:

- 1. Test particle picture and microphysics
- 2. Consequences for acceleration ... and some open questions

Work in collaboration with Guy Pelletier (IPAG)

Particle acceleration at relativistic shock waves

Test particle picture:

- ightarrow particles gain energy by bouncing across the shock front, exploiting the convective electric fields : $\delta E = -rac{v}{c} imes \delta B$
- \rightarrow if scattering is effective, competition between scattering (energy gain) and advection (escape) leads to a power-law dN/dp \propto p^{-s}, s \sim 2.3
- (Bednarz & Ostrowski 98, Kirk et al. 00, Achterberg et al. 01, ML & Pelletier 03, Keshet & Waxman 05)

shock

 β_{sh}

 $\gamma_{sh}\gg \textbf{1}$

c/3

⇒ ultra-relativistic shock waves are mostly perpendicular (superluminal) (Begelman & Kirk 90)

The relativistic Fermi process and micro-turbulence

shock

 β_{sh}

 $\gamma_{sh}\gg 1$

c/3

Test particle picture:

→ if scattering is effective, competition between scattering and advection (escape) leads to a power-law dN/dp \propto p^{-s}, s \sim 2.3

 \rightarrow if $\gamma_{sh} \gg 1$, advection beats acceleration unless particles

scatter in small-scale turbulence $\lambda_{\delta B} < r_g$, $\delta B > B$ and $r_g < \lambda_{\delta B} \delta B/B$

(r_g gyroradius of accelerated particles, $\lambda_{\delta B}$ length scale of δB) (ML et al. 06, Niemiec et al. 06, Pelletier et al. 09, ML & Pelletier 10, 11, Plotnikov et al. 13)

PIC simulations:

(e.g. Spitkovsky 08, Nishikawa et al. 09, Martins et al. 09, Sironi & Spitkovsky 09, 11, 13, Haugbolle 11)

Micro-instabilities at a relativistic shock front

 \rightarrow fast instabilities at ultra-relativistic shocks:

Weibel/filamentation (e.g. Medvedev & Loeb 99): anisotropic instability at low magnetization, builds up δB starting from zero B

current-driven (ML et al. 14a, 14b): driven by the gyration current around B, works at moderate magnetization

 $\rightarrow \text{main limitation: very short precursor, (upstream frame) length} \sim r_{\text{L},0}/\gamma_{\text{sh}}^{3} \sim \gamma_{\text{sh}}^{-1} c/\omega_{c}$ (no gyroresonant interaction at $\gamma_{\text{sh}} \gg 1!$)

 \rightarrow many other potential instabilities at mildly relativistic shock waves (MHD regime)

Instabilities at ultra-relativistic collisionless shocks

Filamentation (Weibel) instability

 \rightarrow a perpendicular mode pinches the plasmas in current filaments by charge separation; the current feeds the fluctuation.

→ leads to a filamentation of the precursor in longitudinal currents of alternate polarity with toroidal in plane magnetic fields

 → reflected/accelerated particles gyrate in background B field and induce a perpendicular current in the shock precursor incoming
 → background plasma compensates current: slow-down along shock normal and instability

Micro-instabilities at a relativistic shock front

 \rightarrow fast instabilities at ultra-relativistic shocks:

Weibel/filamentation (e.g. Medvedev & Loeb 99): anisotropic instability at low magnetization, builds up δB starting from zero B

current-driven (ML et al. 14a, 14b): driven by the gyration current around B, works at moderate magnetization

 $\rightarrow \text{main limitation: very short precursor, (upstream frame) length} \sim r_{\text{L},0}/\gamma_{\text{sh}}^{3} \sim \gamma_{\text{sh}}^{-1} c/\omega_{c}$ (no gyroresonant interaction at $\gamma_{\text{sh}} \gg 1!$)

 \rightarrow many other potential instabilities at mildly relativistic shock waves (MHD regime)

The relativistic Fermi process and micro-turbulence

Test particle picture:

 \rightarrow if $\gamma_{sh} \gg 1$, advection beats acceleration unless particles

scatter in small-scale turbulence $\lambda_{\delta B} < r_g$, $\delta B > B$ and $r_g < \lambda_{\delta B} \delta B/B$

(r_g gyroradius of accelerated particles, $\lambda_{\delta B}$ length scale of δB) (ML et al. 06, Niemiec et al. 06, Pelletier et al. 09, ML & Pelletier 10, 11, Plotnikov et al. 13

Some consequences:

 \rightarrow to trigger acceleration: $\sigma < \epsilon_B^2 \left(\lambda_{\delta B} \omega_{\rm p} / c\right)^2$

i.e. a weakly magnetized environment

 \rightarrow acceleration to γ_{max} is limited (at least) by:

$$\frac{E_{\max}}{E_{\min}} < \left(\frac{\epsilon_B^2}{\sigma}\right)^{1/2} \left(\lambda_{\delta B} \omega_{\rm p}/c\right)$$

i.e, the larger ϵ_B^2/σ , the larger $\gamma_{max}/\gamma_{min}$

background magnetization

micro-turbulence magnetization

definitions

$$\underbrace{\text{ons:}}_{\substack{B \equiv \frac{B^2}{4\pi\gamma_{\rm sh}(\gamma_{\rm sh}-1)nmc^2}} \left\{ \begin{array}{l} \sigma \equiv \frac{B^2}{4\pi\gamma_{\rm sh}(\gamma_{\rm sh}-1)nmc^2} \\ \epsilon_B \equiv \frac{\delta B^2}{8\pi4\gamma_{\rm sh}(\gamma_{\rm sh}-1)nmc^2} \\ E_{\rm min} \sim \gamma_{\rm sh}mc^2 \end{array} \right.$$

shock

$$\beta_{sh}$$

 $\gamma_{sh} \gg 1$
 $\beta_{sh} \approx 1$
 $\beta_{sh} \approx 1$
 $\beta_{sh} \approx 1$

Phase diagram for relativistic shocks

The relativistic Fermi process and micro-turbulence

Test particle picture:

 \rightarrow if $\gamma_{sh} \gg 1$, advection beats acceleration unless particles scatter in small-scale turbulence $\lambda_{\delta B} < r_g$, $\delta B > B$ and $r_g < \lambda_{\delta B} \delta B/B$ (r_g gyroradius of accelerated particles, $\lambda_{\delta B}$ length scale of δB)

Some consequences:

 \rightarrow acceleration timescale: $t_{\rm acc} \approx t_{\rm scatt} \simeq \frac{r_{\rm g}^2}{\lambda_{\delta B} c} \propto p^2$

i.e. acceleration to very high energies becomes difficult

6

explicitly, in the comoving frame (Kirk & Reville 10, Plotnikov et al. 13):

$$\gamma_{e,\max} \sim (nr_e^3)^{-1/6} \sim 1.5 \times 10^6 n_0^{-1/6}$$

 $h\nu_{e,\max} \sim 100 \,\text{keV} \, n_0^{-1/3} B_{\text{G}}$

$$\gamma_{p,\max} \sim \sqrt{t_{\mathrm{dyn}}\lambda_{\delta B}} \frac{\omega_{\mathrm{c}}}{c}$$

for e, comparing t_{acc} and t_{syn}

max synchrotron photon energy (without Doppler boost)

for p, comparing t_{acc} and $t_{dyn} \sim r/(\gamma_{sh}~c)$

Maximum energy:

 \rightarrow scattering in small scale turbulence $\lambda_{B} < r_{g}$ is not as efficient as Bohm...

 \rightarrow max energy for electrons by comparing $t_{acc} \sim t_{scatt}$ to synchrotron loss, with $t_{scatt} \sim r_g^2/(\lambda_B c)$ and $\lambda_B \sim 10 c/\omega_p$, implies a maximum synchrotron photon energy: (e.g. Kirk & Reville 10, Eichler & Pohl 11, Plotnikov et al. 13, Wang et al. 13, Sironi et al. 13):

$$\epsilon_{\gamma,\max} \simeq 2 \operatorname{GeV} E_{54}^{1/4} \epsilon_{B,-2}^{1/2} \lambda_1^{2/3} n_0^{-1/12} t_{\mathrm{obs},2}^{-3/4}$$

→ long-lived >100MeV emission on 1000sec can result from synchrotron afterglow (Kumar & Barniol-Duran 09, 10, Ghisellini et al. 10)

... photons above 10GeV result from IC interactions... (Wang et al. 13)

in GRB130427A:

two spectral components with $\varepsilon_{\gamma,max} \sim \text{GeV}$ at 100-1000 sec for the synchrotron afterglow...

Caveats and open questions at $\gamma_{sh} \gg 1$

 \rightarrow huge hierarchy in timescales : for typical blazar parameters, $t_{\rm dyn} \sim 10^{11} \omega_{\rm p}^{-1}$

 ω_p^{-1} sets the timescale of microphysics, PIC simulations, first Fermi cycles t_{dyn} sets the timescale of hydrodynamic evolution, max energy Fermi cycles

how do accelerated particles back-react on the shock, microturbulence?

\rightarrow additional sources of turbulence?

e.g. Rayleigh-Taylor instability of the contact discontinuity (Gruzinov 01, Levinson 10), Richtmyer Meshkov instability of the shock front (e.g. Sironi & Goodman 07), unsteady shock surface ?

can it sustain the acceleration process at moderate magnetization?

Long-term evolution of the turbulence

 \rightarrow micro-turbulence on c/ ω_p scales decays fast, on multiples of c/ ω_p , through phase mixing

dissipation of turbulence modifies the synchrotron spectral shape of cooling electrons, because electrons of different Lorentz factors cool in different δB ... (Derishev 07, ML 13,15)

... $\alpha \sim -0.5$ may explain the magnetization of GRB afterglows (ML et al. 13)

Open questions in the mildly relativistic regime

\rightarrow Microphysics of mildly relativistic shock waves $\gamma_{sh}\beta_{sh} \sim 1$: still terra incognita...

 \rightarrow Hopes:

- obliquity effects are less prominent than in ultra-relativistic regime...

... subluminal regime becomes relevant in larger part of phase space

- precursor length scales becomes $\geq r_g \dots$

... opens up a new pool of instabilities in MHD range

(e.g. Milosavljevic & Nakar 06, Reville et al. 06, Pelletier et al. 09,

Casse & Marcowith 13, Reville & Bell 14)

... does this allow Bohm, or near-Bohm regime of acceleration?

 \rightarrow Key question:

how high in sigma can acceleration proceed?

ightarrow significant progress in our understanding of particle acceleration at ultra-relativistic

 $(\gamma_{sh}\beta_{sh} \gg 1)$ collisionless shock waves:

... good agreement between theory and PIC simulations...

... satisfactory (interesting) comparison to GRB afterglow observations...

 \rightarrow predictions:

... acceleration successful at $\sigma \ll \varepsilon_{\rm B}{}^2 \sim 10^{\text{-4}}$

... $t_{acc} \sim r_g^2$ / λ

 \rightarrow some open questions:

... long term evolution of the turbulence and the blast?

 \rightarrow acceleration at mildly relativistic shocks is not yet understood:

... in particular, how high in σ can acceleration proceed?

... does acceleration proceed in a near-to Bohm regime?

Synchrotron spectra in dissipative micro-turbulence

(ML13, 15)

- \rightarrow flux F_v at v comes from electrons with $\gamma_e: v_{syn}(\gamma_e) = v...$
- $\rightarrow v_{syn} \propto \gamma_e^2$ and $t_{syn} \propto \gamma_e^{-1}$ imply that low frequencies are produced in regions of low magnetic field, high frequencies are produced in regions of strong magnetic field...
- \rightarrow the multi- λ spectrum provides a tomograph of the turbulence in the blast...
- \rightarrow decaying turbulence leaves a strong signature in the spectral flux F_v(t_{obs}): modifies slopes and characteristic frequencies...
- → weak magnetized turbulence implies that inverse Compton cooling dominates, most of the flux is emitted in the >10 GeV range...