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Particle acceleration at relativistic shock waves
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— particles gain energy by bouncing across the shock front, B ¢/3
. . g v
exploiting the convective electric fields: 6F = —— x B Yo > 1
c

— if scattering is effective, competition between scattering (energy gain)

and advection (escape) leads to a power-law dN/dp « ps, s ~ 2.3

(Bednarz & Ostrowski 98, Kirk et al. 00, Achterberg et al. 01, ML & Pelletier 03, Keshet & Waxman 05)
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= ultra-relativistic shock waves are mostly perpendicular (superluminal) (Begelman & Kirk 90)



The relativistic Fermi process and micro-turbulence Ve |
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Test particle picture: :
— if scattering is effective, competition between scattering B, ¢/3
Ysh »>1

and advection (escape) leads to a power-law dN/dp «< p=s, s ~ 2.3

— if v, > 1, advection beats acceleration unless particles

scatter in small-scale turbulence Agy<r,, 6B >Band r, <A s, 6B/B

(r, gyroradius of accelerated particles, A s length scale of 6B)
(ML et al. 06, Niemiec et al. 06, Pelletier et al. 09, ML & Pelletier 10, 11, Plotnikov et al. 13)

PIC simulations: /

(e.g. Spitkovsky 08, Nishikawa et al. 09, Martins et al. 09, Sironi & Spitkovsky 09, 11, 13, Haugbolle 11)
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Micro-instabilities at a relativistic shock front o

AR
A :
n
beam cr
background
plasma m————
upstream precursor shock downstream

— fast instabilities at ultra-relativistic shocks:

Weibel/filamentation (e.g. Medvedev & Loeb 99): anisotropic instability
at low magnetization, builds up 6B starting from zero B

current-driven (VL et al. 14a, 14b): driven by the gyration current around B,
works at moderate magnetization

—> main limitation: very short precursor, (upstream frame) length ~ r ,/y,* ~ v c/w,
(no gyroresonant interaction at yy>1!)

— many other potential instabilities at mildly relativistic shock waves (MHD regime)



Instabilities at ultra-relativistic collisionless shocks

Filamentation (Weibel) instability

/
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— a perpendicular mode pinches the
plasmas in current filaments by charge
separation; the current feeds the
fluctuation.

— leads to a filamentation of the
precursor in longitudinal currents of
alternate polarity with toroidal in plane
magnetic fields
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— reflected/accelerated particles
gyrate in background B field

and induce a perpendicular current
in the shock precursor

incoming

— background plasma compensates
current: slow-down along shock
normal and instability
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— fast instabilities at ultra-relativistic shocks:

Weibel/filamentation (e.g. Medvedev & Loeb 99): anisotropic instability
at low magnetization, builds up 6B starting from zero B

current-driven (VL et al. 14a, 14b): driven by the gyration current around B,
works at moderate magnetization

—> main limitation: very short precursor, (upstream frame) length ~ r ,/y,* ~ v c/w,
(no gyroresonant interaction at yy>1!)

— many other potential instabilities at mildly relativistic shock waves (MHD regime)



The relativistic Fermi process and micro-turbulence
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Test particle picture: :

— if v, > 1, advection beats acceleration unless particles E—) 7
Bsh c/3
scatter in small-scale turbulence Agy <r,, 6B >Band r, <A s, 6B/B Ysn > 1

(r, gyroradius of accelerated particles, A 55 length scale of 6B)
(ML et al. 06, Niemiec et al. 06, Pelletier et al. 09, ML & Pelletier 10, 11, Plotnikov et al. 13)

Some conseguences:

. . 2
> to trigger acceleration: o < €5 (Aspwp/c)

i.e. a weakly magnetized environment
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— acceleration to y,,,, is limited (at least) by: < (—B) (AsBwp/c)
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Phase diagram for relativistic shocks
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The relativistic Fermi process and micro-turbulence o

Test particle picture:

— if v, > 1, advection beats acceleration unless particles E—)

Bsh

scatter in small-scale turbulence Agy <r,, 6B >Band r, <A s, 6B/B Ysn > 1

(r, gyroradius of accelerated particles, A 55 length scale of 6B)

Some conseguences:

7“2

—> acceleration timescale:  t,.. &~ ticatt ™ S x p2
)\530

i.e. acceleration to very high energies becomes difficult

explicitly, in the comoving frame (Kirk & Reville 10, Plotnikov et al. 13):

— —~1/6
Ve max ™~ (nr?) /6 1.5 x 10° ng / for e, comparing t,.. and t
h;/e,max ~ 100 keV ?’Lal/?)BG max synchrotron photon energy
(without Doppler boost)
W
Yp,max " tdyn)\ng for p, comparing t,.. and

tdyn ~ r‘/(Ysh C)



Max synchrotron energy and GRB afterglows o

Maximum energy:

—> scattering in small scale turbulence Az <r,is not as efficient as Bohm...

— max energy for electrons by comparing t, . ~ t. to synchrotron loss, with
tocare ~ M2/ (Ag€) and Ay ~ 10 ¢/, implies a maximum synchrotron photon energy:
(e.g. Kirk & Reville 10, Eichler & Pohl 11, Plotnikov et al. 13, Wang et al. 13, Sironi et al. 13):
1/4.1/2 y2/3 —1/12 ,—3/4
€ymax = 2GeV Eg) e~ hAY" "ng Lobs,2

— long-lived >100MeV emission on 1000sec can result from synchrotron afterglow
(Kumar & Barniol-Duran 09, 10, Ghisellini et al. 10)

.. photons above 10GeV result from IC interactions... (Wang et al. 13)

- — | GRB 130427A | —
| g
. ' IC
in GRB130427A: e /./ A
| X t,ps =138-750 sec
two spectral components with " P AN
~ - | ‘/‘ —— = _|
€, max ~ G€V at 100-1000 sec | - Lsynchrotron —3%
for the synchrotron afterglow... . - — N
~ ,/ ® e —
=z o ® \
o
pF \
L \ o
100 MeV 1GeV € 10 GeV 100 GeV
f"}/

Liu et al. 13



Caveats and open questions at y,, > 1 ke

-

— huge hierarchy in timescales : for typical blazar parameters,  tqyn ~ 1011%:1

wp‘l sets the timescale of microphysics, PIC simulations, first Fermi cycles

tyn Sets the timescale of hydrodynamic evolution, max energy Fermi cycles

i4 late times

10~
=
wLLl A 9".?&"':’# )
3 y T g early times
~1000 500 0 Ax /(c/w,)500 1000

Keshet et al. 09

how do accelerated particles back-react on the shock, microturbulence ?

— additional sources of turbulence?
e.g. Rayleigh-Taylor instability of the contact discontinuity (Gruzinov 01, Levinson 10),
Richtmyer Meshkov instability of the shock front (e.g. Sironi & Goodman 07), unsteady shock
surface ?

can it sustain the acceleration process at moderate magnetization?



Long-term evolution of the turbulence o
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— micro-turbulence on c/wp scales decays fast, on multiples of c/oop, through phase mixing

damping rate: v, ~ (kc)®/w?

k(6 B})

87

= ep(x) x x~
k

kmax (w)kmax (IE = 0)
(Chang et al. 08)

dissipation of turbulence modifies the synchrotron spectral shape of cooling electrons,
because electrons of different Lorentz factors cool in different &B... (Derishev 07, ML 13,15)

... & ~ -0.5 may explain the magnetization of GRB afterglows (ML et al. 13)



Open questions in the mildly relativistic regime o

— Microphysics of mildly relativistic shock waves y, 8, ~ 1: still terra incognita...

— Hopes:
- obliquity effects are less prominent than in ultra-relativistic regime...

... subluminal regime becomes relevant in larger part of phase space

- precursor length scales becomes =, ...
... opens up a new pool of instabilities in MHD range

(e.g. Milosavljevic & Nakar 06, Reville et al. 06, Pelletier et al. 09,
Casse & Marcowith 13, Reville & Bell 14)
... does this allow Bohm, or near-Bohm regime of acceleration?

— Key question:

how high in sigma can acceleration proceed?



Summary and conclusions o

— significant progress in our understanding of particle acceleration at ultra-relativistic
(Y<nBg, > 1) collisionless shock waves:
... good agreement between theory and PIC simulations...

... satisfactory (interesting) comparison to GRB afterglow observations...

— predictions:

... acceleration successful at 0 < €32~ 10*

v tae ~ 12/ A

—> some open questions:

... long term evolution of the turbulence and the blast?

— acceleration at mildly relativistic shocks is not yet understood:

... in particular, how high in o can acceleration proceed?

... does acceleration proceed in a near-to Bohm regime?



Synchrotron spectra in dissipative micro-turbulence Y
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— flux F, at v comes from electrons with v.: vy (y.) = v...
—> Vg € v, and fgynoC v, 1 imply that low frequencies are produced in regions of low

magnetic field, high frequencies are produced in regions of strong magnetic field...
— the multi-A spectrum provides a tomograph of the turbulence in the blast...

— decaying turbulence leaves a strong signature in the spectral flux F,(t

slopes and characteristic frequencies...
— weak magnetized turbulence implies that inverse Compton cooling dominates, most

of the flux is emitted in the >10 GeV range...
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