Blandford-Znajek mechanism is

a Penrose process

Jean-Píerre Lasota
IAP \& N.Copernicus Astronomical Center

Based on
Lasota, Gourgoulhon, Abramoreicz, Tchekhorskoy © Narayan ; Phys. Rev. D 89, 024041 (2014)

Black holes are (pure) general-relativistic objects

Kerr black-hole solution: the Carter-Penrose diagram

Stretched horizon or membrane

Stretched horizon or membrane

Rotation of Kerr space-time

\odot

Penrose 69

The whole of space-time rotates, including the horizon. It is impossible to change the rotation of external space-time without changing the black-hole rotation.

Horizon
 (stationary \& axisymmetric)

$\overrightarrow{\boldsymbol{\ell}}=\overrightarrow{\boldsymbol{\eta}}+\omega_{H} \overrightarrow{\boldsymbol{\xi}}$,
 $\omega_{H}=a /\left[2 m r_{H}\right]$,
 $\vec{\ell} \cdot \vec{\ell}=0$
 $r_{H}=m+\sqrt{m^{2}-a^{2}}$

Non-linear relation between BH mass and rotational energy

$$
M^{2}=M_{\mathrm{irr}}^{2}+\frac{J^{2}}{4 M_{\mathrm{irr}}^{2}} \quad M_{\mathrm{irr}}^{2}=\frac{S}{16 \pi} \quad \Delta M_{\mathrm{irr}} \geq 0
$$

Penrose process $\overrightarrow{\boldsymbol{p}}_{1}=\overrightarrow{\boldsymbol{p}}_{2}+\overrightarrow{\boldsymbol{p}}_{*} \longrightarrow E_{1}=E_{2}+\Delta E_{H}$

$\overrightarrow{\boldsymbol{\eta}}$ - timelike (at ${ }^{\infty}$) stationarity Killing vector

Penrose process $\overrightarrow{\boldsymbol{p}}_{1}=\overrightarrow{\boldsymbol{p}}_{2}+\overrightarrow{\boldsymbol{p}}_{*} \longrightarrow E_{1}=E_{2}+\Delta E_{H}$

Penrose process $\overrightarrow{\boldsymbol{p}}_{1}=\overrightarrow{\boldsymbol{p}}_{2}+\overrightarrow{\boldsymbol{p}}_{*} \longrightarrow E_{1}=E_{2}+\Delta E_{H}$

$$
E_{2}=-\overrightarrow{\boldsymbol{\eta}} \cdot \overrightarrow{\boldsymbol{p}}_{2}
$$

$$
E_{H}=-\vec{\eta} \cdot \vec{p}_{*}
$$

$$
E_{1}=-\overrightarrow{\boldsymbol{\eta}} \cdot \overrightarrow{\boldsymbol{p}}_{1}
$$

$\overrightarrow{\boldsymbol{\eta}}$ - timelike (at ${ }^{\infty}$) stationarity Killing vector

Penrose process

$$
\overrightarrow{\boldsymbol{p}}_{1}=\overrightarrow{\boldsymbol{p}}_{2}+\overrightarrow{\boldsymbol{p}}_{*} \longrightarrow E_{1}=E_{2}+\Delta E_{H}
$$

$$
E_{2}=-\overrightarrow{\boldsymbol{\eta}} \cdot \overrightarrow{\boldsymbol{p}}_{2}
$$

$E_{1}=-\overrightarrow{\boldsymbol{\eta}} \cdot \overrightarrow{\boldsymbol{p}}_{1}$
$\overrightarrow{\boldsymbol{\eta}} \quad$ - timelike (at ${ }^{\infty}$) stationarity Killing vector $E_{2}>E_{1}$ if, and only if $\Delta E_{H}<0$
$\overrightarrow{\boldsymbol{\eta}}$ - timelike (at ∞) stationarity Killing 4-vector
$\vec{\xi} \quad$ - spacelike axisymmetry Killing 4-vector There are no stationary $(\overrightarrow{\boldsymbol{u}} \sim \overrightarrow{\boldsymbol{\eta}})$ observers in the ergoregion $(\overrightarrow{\boldsymbol{\eta}} \cdot \overrightarrow{\boldsymbol{\eta}}>\mathbf{0})$ but there are observers rotating with spacetime: ZAMO - Zero Angular-Momentum Observers

$$
\vec{u}=q(\vec{\eta}+\omega \vec{\xi})
$$

$$
\omega=-\frac{\vec{\eta} \cdot \vec{\xi}}{\vec{\xi} \cdot \vec{\xi}} .
$$

$$
\text { for ZAMOs } \quad \overrightarrow{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{u}} \leq \mathbf{0}
$$

Therefore energy measured by ZAMOs is always non-negative:

$$
\begin{gathered}
-(\vec{\eta}+\omega \vec{\xi}) \overrightarrow{\boldsymbol{p}}_{*}=\left(\Delta E_{H}-\omega_{H} \Delta J_{H}\right) \geq 0 \\
\left(\omega \longrightarrow \omega_{H}\right)
\end{gathered}
$$

Hence if $\Delta E_{H}<0$ then $\omega_{H} \Delta J_{H} \leq \Delta E_{H}$
Since $\omega_{H} \geq 0 \quad$ when $\omega_{H} \neq 0$

Therefore energy measured by ZAMOs is always non-negative:

$$
\begin{gathered}
-(\vec{\eta}+\omega \vec{\xi}) \overrightarrow{\boldsymbol{p}}_{*}=\left(\Delta E_{H}-\omega_{H} \Delta J_{H}\right) \geq 0 \\
\left(\omega \longrightarrow \omega_{H}\right)
\end{gathered}
$$

Hence if $\Delta E_{H}<0$ then $\omega_{H} \Delta J_{H} \leq \Delta E_{H}$
Since $\omega_{H} \geq 0 \quad$ when $\omega_{H} \neq 0$

Therefore energy measured by ZAMOs is always non-negative:

$$
\begin{gathered}
-(\vec{\eta}+\omega \vec{\xi}) \overrightarrow{\boldsymbol{p}}_{*}=\left(\Delta E_{H}-\omega_{H} \Delta J_{H}\right) \geq 0 \\
\left(\omega \longrightarrow \omega_{H}\right)
\end{gathered}
$$

Hence if $\Delta E_{H}<0$ then $\omega_{H} \Delta J_{H} \leq \Delta E_{H}$
Since $\omega_{H} \geq 0 \quad$ when $\omega_{H} \neq 0$

Therefore energy measured by ZAMOs is always non-negative:

$$
\begin{gathered}
-(\vec{\eta}+\omega \vec{\xi}) \vec{p}_{*}=\left(\Delta E_{H}-\omega_{H} \Delta J_{H}\right) \geq 0 \\
\left(\omega \longrightarrow \omega_{H}\right)
\end{gathered}
$$

Hence if $\Delta E_{H}<0$ then $\omega_{H} \Delta J_{H} \leq \Delta E_{H}$
Since $\omega_{H} \geq 0 \quad$ when $\omega_{H} \neq 0$
$\Delta J_{H}<0$.

T - energy moment tensor

$\left.T_{\mu \nu} \ell^{\mu} \ell^{\nu}\right|_{\mathcal{H}} \geq 0$.
 - null energy condition

- Energy conservation

$$
P^{\alpha}=-T_{\mu}^{\alpha} \eta^{\mu}
$$

- Noether current (energy momentum density vector »)

$$
\nabla_{\mu} P^{\mu}=0
$$ so by Stoke's theorem:

$$
\oint_{\mathscr{V}} \epsilon(\overrightarrow{\boldsymbol{P}})=0
$$

$$
\epsilon(\overrightarrow{\boldsymbol{P}})_{\alpha \beta \gamma}=P^{\mu} \epsilon_{\mu \alpha \beta \gamma}
$$

$$
\int_{\Sigma_{1} \downarrow} \epsilon(\overrightarrow{\boldsymbol{P}})+\int_{\underset{\leftarrow}{ } \mathcal{H}} \epsilon(\overrightarrow{\boldsymbol{P}})+\int_{\Sigma_{2} \uparrow} \epsilon(\overrightarrow{\boldsymbol{P}})+\int_{\Sigma_{\text {ext }}} \epsilon(\overrightarrow{\boldsymbol{P}})=0
$$

$$
E_{1}:=\int_{\Sigma_{1} \uparrow} \epsilon(\overrightarrow{\boldsymbol{P}})=-\int_{\Sigma_{1}} P_{\mu} n_{1}^{\mu} \mathrm{d} V
$$

$$
E_{2}:=\int_{\Sigma_{2} \uparrow} \epsilon(\overrightarrow{\boldsymbol{P}})=-\int_{\Sigma_{2}} P_{\mu} n_{2}^{\mu} \mathrm{d} V
$$

$$
\Delta E_{\text {ext }}:=\int_{\Sigma_{\text {eapt }}} \epsilon(\vec{P})=\int_{\Sigma_{\text {ext }}} P_{\mu} s^{\mu} \mathrm{d} V
$$

$$
\Delta E_{H}:=\int_{\Delta \mathcal{H}} \epsilon(\overrightarrow{\boldsymbol{P}})=-\int_{\Delta \mathcal{H}} P_{\mu} \ell^{\mu} \mathrm{d} V
$$

$E_{2}+\Delta E_{\text {ext }}-E_{1}=-\Delta E_{H}$

2
$M^{\alpha}=T_{\mu}^{\alpha} \xi^{\mu}$ • angular-momentum density vector

$$
J_{2}+J_{\mathrm{ext}}-J_{1}=-\Delta J_{H}
$$

Energy « gain »: $\Delta E:=E_{2}+\Delta E_{\text {ext }}-E_{1}$

can be positive, if and only if $\Delta E_{H}<0$ We refer to any such process as a Penrose process.

$$
T_{\mu \nu} \ell^{\mu} \ell^{\nu}=T_{\mu \nu}\left(\eta^{\nu}+\omega_{H} \xi^{\nu}\right) \ell^{\mu}=-P_{\mu} \ell^{\mu}+\omega_{H} M_{\mu} \ell^{\mu}
$$

$-\int_{\Delta A^{2}} P_{\mu} \mu^{\mu} \mathrm{dV}+\omega_{H} \int_{\Delta H} H_{\mu^{\prime}} \mu^{\mu} \mathrm{dV} \geq 0 \omega_{H} \Delta J_{H} \leq \Delta E_{H} \Delta J_{H}<0$
For a matter distribution or a nongravitational field obeying the null energy condition, a necessary and sufficient condition for energy extraction from a rotating black hole is that it absorbs negative energy ΔE_{H} and negative angular momentum ΔJ_{H}.

Penrose process in terms of the Noether current

$\Delta E_{H}<0$ implies $P_{\mu} \ell^{\mu}>0$

but since $\vec{\ell}$ is a future -directed null vector this is possible if, and only if $\overrightarrow{\boldsymbol{P}}$ is either
(i) spacelike, or
(iii) or past-directed timeline or past-directed null

A necessary condition for a Pentose process to occur is to have the Noether current $\overrightarrow{\boldsymbol{P}}$ be spacelike or past directed (timelike or null) on some part of $\Delta \mathcal{H}$.

Mechanical Penrose process

$$
T_{\alpha \beta}(M)=\mathfrak{m} \int_{-\infty}^{+\infty} \delta_{A(\tau)}(M) g_{\alpha}{ }^{\mu}(M, A(\tau)) u_{\mu}(\tau) \times g_{\beta}{ }^{\nu}(M, A(\tau)) u_{\nu}(\tau) \mathrm{d} \tau
$$

$$
\delta_{A}(M)=\frac{1}{\sqrt{-g}} \delta\left(x^{0}-z^{0}\right) \delta\left(x^{1}-z^{1}\right) \delta\left(x^{2}-z^{2}\right) \delta\left(x^{3}-z^{3}\right)
$$

$$
\begin{aligned}
P_{\alpha}(M)=\mathfrak{m} \int_{-\infty}^{+\infty} \delta_{A(\tau)} & (M)\left[-g_{\sigma}^{\nu}(M, A(\tau)) u_{\nu}(\tau) \eta^{\sigma}(M)\right] \\
& \times g_{\alpha}{ }^{\mu}(M, A(\tau)) u_{\mu}(\tau) \mathrm{d} \tau
\end{aligned}
$$

$E_{1}=-\left.\mathfrak{m}_{1}\left(\eta_{\mu} u_{1}^{\mu}\right)\right|_{A_{1}}=-\mathfrak{m}_{1} \eta_{\mu} u_{1}^{\mu}, \Delta E_{H}=-\left.\mathfrak{m}_{*}\left(\eta_{\mu} u_{*}^{\mu}\right)\right|_{A_{H}}=-\mathfrak{m}_{*} \eta_{\mu} u_{*}^{\mu}$
$E_{2}=-\mathfrak{m}_{2} \eta_{\mu} u_{2}^{\mu} \quad E_{2}+\Delta E_{\mathrm{ext}}-E_{1}=-\Delta E_{H}$ so $E_{2}>E_{1}$ if and only if

$\Delta E_{H}<0, \quad$ if and only if $\eta_{\mu} u_{*}^{\mu}>0$

(which is possible in the ergosphere only)
$\overrightarrow{\boldsymbol{P}}_{*}$ is collinear to $\overrightarrow{\boldsymbol{u}}_{*}$ so it is timelike and past-directed because is negative.

$$
\delta_{A}(M)=\frac{1}{\sqrt{-g}} \delta\left(x^{0}-z^{0}\right) \delta\left(x^{1}-z^{1}\right) \delta\left(x^{2}-z^{2}\right) \delta\left(x^{3}-z^{3}\right)
$$

$$
\begin{gathered}
P_{\alpha}(M)=\mathfrak{m} \int_{-\infty}^{+\infty} \delta_{A(\tau)}(M)\left[-g_{\sigma}{ }^{\nu}(M, A(\tau)) u_{\nu}(\tau) \eta^{\sigma}(M)\right] \\
\times g_{\alpha}{ }^{\mu}(M, A(\tau)) u_{\mu}(\tau) \mathrm{d} \tau .
\end{gathered}
$$

$E_{1}=-\left.\mathfrak{m}_{1}\left(\eta_{\mu} u_{1}^{\mu}\right)\right|_{A_{1}}=-\mathfrak{m}_{1} \eta_{\mu} u_{1}^{\mu}, \Delta E_{H}=-\left.\mathfrak{m}_{*}\left(\eta_{\mu} u_{*}^{\mu}\right)\right|_{A_{H}}=-\mathfrak{m}_{*} \eta_{\mu} u_{*}^{\mu}$
$E_{2}=-\mathfrak{m}_{2} \eta_{\mu} u_{2}^{\mu} E_{2}+\Delta E_{\text {ext }}-E_{1}=-\Delta E_{H}$ so $E_{2}>E_{1}$ if and only if

$\Delta E_{H}<0$, if and only if $\eta_{\mu} u_{*}^{\mu}>0$

(which is possible in the ergosphere only)
$\overrightarrow{\boldsymbol{P}}_{*}$ is collinear to $\overrightarrow{\boldsymbol{u}}_{*}$ so it is timelike and past-directed because is negative.

$$
\delta_{A}(M)=\frac{1}{\sqrt{-g}} \delta\left(x^{0}-z^{0}\right) \delta\left(x^{1}-z^{1}\right) \delta\left(x^{2}-z^{2}\right) \delta\left(x^{3}-z^{3}\right)
$$

$$
\begin{gathered}
P_{\alpha}(M)=\mathfrak{m} \int_{-\infty}^{+\infty} \delta_{A(\tau)}(M)\left[-g_{\sigma}{ }^{\nu}(M, A(\tau)) u_{\nu}(\tau) \eta^{\sigma}(M)\right] \\
\times g_{\alpha}{ }^{\mu}(M, A(\tau)) u_{\mu}(\tau) \mathrm{d} \tau .
\end{gathered}
$$

$E_{1}=-\left.\mathfrak{m}_{1}\left(\eta_{\mu} u_{1}^{\mu}\right)\right|_{A_{1}}=-\mathfrak{m}_{1} \eta_{\mu} u_{1}^{\mu}, \Delta E_{H}=-\left.\mathfrak{m}_{*}\left(\eta_{\mu} u_{*}^{\mu}\right)\right|_{A_{H}}=-\mathfrak{m}_{*} \eta_{\mu} u_{*}^{\mu}$
$E_{2}=-\mathfrak{m}_{2} \eta_{\mu} u_{2}^{\mu} E_{2}+\Delta E_{\text {ext }}-E_{1}=-\Delta E_{H}$ so $E_{2}>E_{1}$ if and only if

$\Delta E_{H}<0$, if and only if $\eta_{\mu} u_{*}^{\mu}>0$

(which is possible in the ergosphere only)
$\overrightarrow{\boldsymbol{P}}_{*}$ is collinear to $\overrightarrow{\boldsymbol{u}}_{*}$ so it is timelike and past-directed because is negative.

Mechanical Penrose process

General electromagnetic field

$$
T_{\alpha \beta}=\frac{1}{\mu_{0}}\left(F_{\mu \alpha} F_{\beta}^{\mu}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} g_{\alpha \beta}\right)
$$

Therefore the integrand in $\Delta E_{H}=-\int_{\Delta \mathcal{H}} P_{\mu} \mu^{\mu} \mathrm{d} V$ is:

$$
T(\vec{\eta}, \vec{\ell})=\frac{1}{\mu_{0}}\left(F_{\mu \rho} \eta^{\rho} F^{\mu}{ }_{\sigma} \ell^{\sigma}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \vec{\eta} \cdot \vec{\ell}\right)
$$

since $\overrightarrow{\boldsymbol{\eta}} \cdot \overrightarrow{\boldsymbol{\ell}}=0$

$$
\mu_{0} \boldsymbol{T}(\overrightarrow{\boldsymbol{\eta}}, \vec{\ell})=F_{\mu \rho} \eta^{\rho} F_{\sigma}^{\mu} \ell^{\sigma}
$$

- pseudoelectric field 1-form on \mathscr{T}

$$
\boldsymbol{E}:=\boldsymbol{F}(., \vec{\ell})
$$

Hence

$$
\mu_{0} \boldsymbol{T}(\overrightarrow{\boldsymbol{\eta}}, \vec{\ell})=\boldsymbol{F}(\overrightarrow{\boldsymbol{E}}, \overrightarrow{\boldsymbol{\eta}})
$$

or $\mu_{0} \boldsymbol{T}(\overrightarrow{\boldsymbol{\eta}}, \vec{\ell})=\overrightarrow{\boldsymbol{E}} \cdot \overrightarrow{\boldsymbol{E}}-\omega_{H} \boldsymbol{F}(\overrightarrow{\boldsymbol{E}}, \overrightarrow{\boldsymbol{\xi}})$
therefore $\Delta E_{H}<0$,
if $\quad \omega_{H} \boldsymbol{F}(\overrightarrow{\boldsymbol{E}}, \overrightarrow{\boldsymbol{\xi}})>\overrightarrow{\boldsymbol{E}} \cdot \overrightarrow{\boldsymbol{E}}$ in some part of $\Delta \mathcal{H}$.
This is the most general condition on any electromagnetic field configuration allowing black-hole energy extraction through a Penrose process
(Since $\overrightarrow{\boldsymbol{E}}$ is tangent to $\mathscr{T} \overrightarrow{\boldsymbol{E}} \cdot \overrightarrow{\boldsymbol{E}} \geq 0$)

- Stationary and axisymmetric electromagnetic field

$$
\mathcal{L}_{\vec{\eta}} F=0 \quad \text { and } \quad \mathcal{L}_{\vec{\xi}} F=0
$$

therefore

$$
\begin{aligned}
& \boldsymbol{F}(., \vec{\eta})=\mathrm{d} \Phi \\
& \boldsymbol{F}(., \vec{\xi})=\mathrm{d} \Psi \\
& { }^{\boldsymbol{F}}(\vec{\eta}, \vec{\xi})=I,
\end{aligned}
$$

Φ, Ψ and I are gauge-invariant. Introducing a 1 -
form \boldsymbol{A} such that $\boldsymbol{F}=\mathrm{dA}$ one can choose A so that

$$
\Phi=\langle\boldsymbol{A}, \overrightarrow{\boldsymbol{\eta}}\rangle=A_{t}
$$

$$
\Psi=\langle\boldsymbol{A}, \overrightarrow{\boldsymbol{\xi}}\rangle=A_{\varphi} .
$$

and $\quad \boldsymbol{E}=\mathbf{d}\left(\Phi+\omega_{H} \Psi\right)$
is a pure gradient.

Force free case (Blandford-Znajek)

$$
\boldsymbol{F}\left(\overrightarrow{\boldsymbol{j}}_{, .}\right)=0
$$

\vec{j} - electric 4-current. From stationarity

$$
\vec{j} \cdot \vec{\nabla} \Phi=0 \quad \text { and } \quad \vec{j} \cdot \vec{\nabla} \Psi=0
$$

so there exists a function $\omega(\Psi)$ such that

$$
\mathbf{d} \Phi=-\omega(\Psi) \mathbf{d} \Psi
$$

One gets

$$
\mu_{0} \boldsymbol{T}(\overrightarrow{\boldsymbol{\eta}}, \vec{\ell})=\vec{\nabla} \Phi \cdot \vec{\nabla}\left(\Phi+\omega_{H} \Psi\right)
$$

so $\vec{\nabla} \Psi$ is tangent to \mathscr{T}

One gets

$$
\mu_{0} \boldsymbol{T}(\overrightarrow{\boldsymbol{\eta}}, \vec{\ell})=\omega(\Psi)\left(\omega(\Psi)-\omega_{H}\right) \vec{\nabla} \Psi \cdot \vec{\nabla} \Psi .
$$

so $\vec{\nabla} \Psi$ is tangent to \mathscr{T}

One gets

$$
\mu_{0} \boldsymbol{T}(\overrightarrow{\boldsymbol{\eta}}, \vec{\ell})=\omega(\Psi)\left(\omega(\Psi)-\omega_{H}\right) \vec{\nabla} \Psi \cdot \vec{\nabla} \Psi .
$$

$$
\vec{\ell} \cdot \vec{\nabla} \Psi=\overrightarrow{\boldsymbol{\eta}} \cdot \vec{\nabla} \Psi+\omega_{H} \overrightarrow{\boldsymbol{\xi}} \cdot \vec{\nabla} \Psi=\underbrace{\mathcal{L}_{\vec{n}} \Psi}_{0}+\omega_{H} \underbrace{\mathcal{L}_{\mathcal{\xi}^{\Psi}} \Psi}_{0}=0
$$

so $\vec{\nabla} \Psi$ is tangent to \mathscr{T}

One gets

$$
\mu_{0} \boldsymbol{T}(\overrightarrow{\boldsymbol{\eta}}, \vec{\ell})=\omega(\Psi)\left(\omega(\Psi)-\omega_{H}\right) \vec{\nabla} \Psi \cdot \vec{\nabla} \Psi .
$$

$$
\vec{\ell} \cdot \vec{\nabla} \Psi=\overrightarrow{\boldsymbol{\eta}} \cdot \vec{\nabla} \Psi+\omega_{H} \overrightarrow{\boldsymbol{\xi}} \cdot \vec{\nabla} \Psi=\underbrace{\mathcal{L}_{\vec{n}} \Psi}_{0}+\omega_{H} \underbrace{\mathcal{L}_{\mathcal{B}^{\Psi}} \Psi}_{0}=0
$$

so $\vec{\nabla} \Psi$ is tangent to \mathscr{T}

- therefore on $\mathscr{T} \vec{\nabla} \Psi \cdot \vec{\nabla} \Psi \geq 0$

One gets

$$
\mu_{0} \boldsymbol{T}(\overrightarrow{\boldsymbol{\eta}}, \vec{\ell})=\omega(\Psi)\left(\omega(\Psi)-\omega_{H}\right) \vec{\nabla} \Psi \cdot \vec{\nabla} \Psi .
$$

$$
\vec{\ell} \cdot \vec{\nabla} \Psi=\overrightarrow{\boldsymbol{\eta}} \cdot \vec{\nabla} \Psi+\omega_{H} \overrightarrow{\boldsymbol{\xi}} \cdot \vec{\nabla} \Psi=\underbrace{\mathcal{L}_{\vec{n}} \Psi}_{0}+\omega_{H} \underbrace{\mathcal{L}_{\mathcal{\xi}^{\Psi}} \Psi}_{0}=0
$$

so $\vec{\nabla} \Psi$ is tangent to \mathscr{T}

- therefore on $\mathscr{T} \vec{\nabla} \Psi \cdot \vec{\nabla} \Psi \geq 0$ and

$$
\boldsymbol{T}(\overrightarrow{\boldsymbol{\eta}}, \vec{\ell})<0 \Longleftrightarrow\left\{\begin{array}{l}
0<\omega(\Psi)<\omega_{H} \\
\vec{\nabla} \Psi \cdot \vec{\nabla} \Psi \neq 0
\end{array}\right.
$$

(Blandford \& Znajek 1977)

Blandford-Znajek = Penrose

For a stationary and axisymmetric force-free electromagnetic field, a necessary condition for the Penrose process to occur is

$$
0<\omega(\Psi)<\omega_{H} \text { in some part of } \Delta \mathcal{H}
$$

MAD (magnetically chocked) flows

Tchekhovskoy, Narayan, McKinney, Blandford

MAD (magnetically chocked) flows

Tchekhovskoy, Narayan, McKinney, Blandford

MAD at horizon

Noether current in GRMHD

$\mathrm{MHD}: u_{\mu} F^{\mu \nu}=0$
Magnetic field vector $b^{\mu}:=\frac{1}{2} \epsilon^{\mu \nu \alpha \beta} u_{\nu} F_{\alpha \beta}$
Hence the energy-momentum tensor

$$
b_{\mu} u^{\mu}=0
$$

$$
T_{\mu \nu}^{(\mathrm{EM})}=b^{2} u_{\mu} u_{\nu}+\frac{1}{2} b^{2} g_{\mu \nu}-b_{\mu} b_{\nu}
$$

Noether current $\quad P_{\mu}^{(\mathrm{EM})}=T_{\mu \nu}^{(\mathrm{EM})} \eta^{\nu}$

$$
P_{(\mathrm{EM})}^{\mu} P_{\mu}^{(\mathrm{EM})}=P_{(\mathrm{EM})}^{2}=\frac{1}{4} b^{4} g_{t t}
$$

Noether current in GRMHD

MHD: $u_{\mu} F^{\mu \nu}=0$
Magnetic field vector $b^{\mu}:=\frac{1}{2} \epsilon^{\mu \nu \alpha \beta} u_{\nu} F_{\alpha \beta}$
Hence the energy-momentum tensor

$$
b_{\mu} u^{\mu}=0
$$

$$
T_{\mu \nu}^{(\mathrm{EM})}=b^{2} u_{\mu} u_{\nu}+\frac{1}{2} b^{2} g_{\mu \nu}-b_{\mu} b_{\nu}
$$

Noether current $\quad P_{\mu}^{(\mathrm{EM})}=T_{\mu \nu}^{(\mathrm{EM})} \eta^{\nu}$
$P_{(\mathrm{EM})}^{\mu} P_{\mu}^{(\mathrm{EM})}=P_{(\mathrm{EM})}^{2}=\frac{1}{4} b^{4} g_{t t}>0$ in the ergosphere

Noether current: MAD

$$
T_{\mu \nu}=T_{\mu \nu}^{(\mathrm{MA})}+T_{\mu \nu}^{(\mathrm{EM})}
$$

$$
P^{2}=\left(\frac{1}{2} b^{2}+p\right)^{2} g_{t t}-A
$$

$$
A=2(\Gamma-1) u b_{t}^{2}+u_{t}^{2}\left(\rho+u+p+b^{2}\right)[(2-\Gamma) u+\rho],
$$

Conclusions

- The Blandford-Znajek mechanism is rigorously a Penrose process.
- GRMHD simulations of Magnetically Arrested Discs correctly (from the point of view of General Relativity) describe extraction of black-hole rotational energy through a Penrose process.

