Magnetic fields in kiloparsec-scale Relativistic Jets

Robert Laing (ESO)

Outline

2

Background

- Strong and weak-flavour jets
- Jet modelling methods
- 1 A strong-flavour jet: NGC 6251
- 2 Weak-flavour jets

We really want to know how jets are formed – but the (synchrotron) light is brighter two blocks (kpc) downstream

What do we want to know?

- Magnetic-field topology
 - Component ratios: toroidal:longitudinal:radial
 - Vector-ordered or disordered?
- What are the jet velocity fields
 - Deceleration
 - Transverse structure
- How does jet composition change with distance?
 - Leptons and baryons; mass flux and entrainment rates
- What are the energy and momentum fluxes?
- Confinement
 - Gas pressure, B-field, not at all, ...
- Effects on external environment
 - Energy input, shocks, magnetic field

FRI/Weak-flavour jets: deceleration Low-luminosity; transverse apparent magnetic fields

Radio Galaxy 3C31 (RL et al. 2008)

FRII/Strong-flavour Jets – always fast? Powerful; longitudinal apparent fields

3C353: Swain, Bridle & Baum

3C334: Bridle et al.

Apparent field direction and radio luminosity

Jet Models

- What distributions of flow velocity, field geometry and restframe emissivity are consistent with observations?
- Observe:
 - Deep, high-resolution radio images; IQU, corrected for Faraday rotation
- Assume:
 - Symmetrical, axisymmetric, stationary, relativistic flow
 - Power-law energy distribution, optically-thin synchrotron
- Parametrised model of:
 - Geometry
 - Velocity field in 3D
 - Emissivity
 - Magnetic-field component ratios
- Calculate I, Q, U; optimise

How does this work?

- Assumption of intrinsic side-to-side symmetry close to AGN
- Modelling side-to-side asymmetries
 - Total intensity alone is not enough: ratio

 $I_{i}/I_{ci} = [(1+\beta\cos\theta)/(1-\beta\cos\theta)]^{2+\alpha}$

depends only on $\beta cos \theta$ for isotropic rest-frame emission ...

- ... but polarized emission cannot be isotropic in rest frame
- Use both I and linear polarization, for which asymmetries depend on a different combinations of β and θ
- Aberration → we look at approaching and receding jets at different angles to the line of sight in the rest frame
- Enough information to separate β and θ if we know the field structure a priori
- ... which we don't, so need to fit
- Hence need good S/N and transverse resolution in IQU

Understanding the field structure

2D transverse field sheets on-axis + longitudinal field shear layer

Wrong

2D toroidal and longitudinal; component rms equal

Right

Longitudinal – transverse field transition

(1) Strong-flavour jets

- At least mildly relativistic velocities on kpc scales:
 - Depolarization asymmetry (RL, Garrington et al. 1988)
 - Continuity of sidedness from pc scales, where there is ample evidence for highly relativistic motion
 - ... very hard to decelerate powerful jets without destruction
- But:
 - Integrated jet/counter-jet rations → β ≈ 0.6 (Wardle & Aaron; Mullin & Hardcastle)
 - Beamed inverse Compton X-rays require Γ ≈ 10 (Tavecchio et al.;Celotti et al.)
 - ... as do proper motions on pc scales
- Spine/layer models?
 - $\Gamma \approx 10$ spine surrounded by $\Gamma \approx 2$ (shear?) layer?

10

- Longitudinal apparent field
 - What is the 3D structure?

Observing strong-flavour jets is painful

- Narrow
- Faint (especially the counter-jets)
- Emission superimposed on lobes, which have filaments and other junk emission of great interest
- Really need resolution <0.05 arcsec; sensitivity <10 nJy/beam and dynamic range >10⁷
- While waiting for this, try
 - Cygnus A (very bright) in progress
 - NGC 6251 (a transition case)
 - Jansky VLA
 - 5-7 GHz
 - 1.5 arcsec resolution

• Fighting interference, dynamic range and leakage corrections, but can show preliminary results

NGC6251

Transition case between weak and strong flavour jets

Giant radio galaxy NGC6251 (z=0.0247;1.8 Mpc projected)

Collimated jets

Jet/counter-jet ratio is high at all distances

Fermi LAT detection:

- variable

emission from outer main jet instead of/as well as core?
(Abdo et al. 2010; Grandi et al. 2013)

Observed and model I

Observed and model fractional polarization

= longitudinal – tranverse apparent field transition

Observed and model B vectors

Caution: Faraday rotation corrections uncertain

Velocity and Magnetic Field Structure

Best fit (so far)

- Geometry
 - $\theta = 34^{\circ}$
- Velocity
 - Deceleration from $\beta = 0.992$ ($\Gamma = 8$) to $\beta = 0.86$ ($\Gamma = 2$) on-axis
 - Edge velocity ~constant ($\beta = 0.55$ to $\beta = 0.51$)
 - At large distances, velocity is well constrained at edge; could be larger on-axis
 - Assumed transverse profile (truncated Gaussian) does not give enough limb-brightening in counter-jet – modify assumed functional form
- Magnetic field
 - Longitudinal and toroidal components comparable close to AGN; toroidal becomes dominant at larger distances

17

(2) How does NGC6251 compare with weakflavour jets?

Laing & Bridle (2014)

10 radio galaxies 0.015 < z < 0.05 Low-power, FRI

Differences:

Weak flavour jets:

- expand rapidly
- decelerate from
 Γ≈2 to Γ≈1

Similarities:

- Longitudinal →
 toroidal field
 Transverse
- velocity gradients

An example: I model

How important are intrinsic asymmetries?

From statistics of jet sidedness reversals, the mean intrinsic emissivity ratio is \approx 1.5 at 10 kpc.

Polarization fits

20

Vectors

- along apparent magnetic field direction
- lengths \propto degree of polarization

Another representation: Q/I

Q/I > 1 apparent field transverse

Q/I < 1 apparent field longitudinal

 $U \approx 0$

Fractional magnetic field components

Constraining the field configuration

- From synchrotron emission alone (in the absence of associated Faraday rotation), we cannot tell whether a field is vector-ordered, or disordered with many reversals
- Partially ordered fields can produce very high fractional polarizations (if viewed at the right orientation)
- Specific field configurations can be excluded if they fail to reproduce the observed polarization.
- Ambiguities (especially between vector-ordered and disordered, anisotropic fields with similar component ratios) often remain.
- It helps to see both sides of a relativistic twin-jet source (provided that it is really symmetrical, of course)

Transverse profiles can help

$$\theta = 90^{\circ}$$

45° pitch angle helix

$$\theta = 45^{\circ}$$

A consistency test: Faraday Rotation

Rotation measure gradients on kpc scales

A second consistency test: core fraction

Core is the optically-thick base of the jet

Assume intrinsic ratio of core/extended emission is constant

Doppler beaming causes observed ratio f to be anticorrelated with θ

Spectrum and speed

Spectrum becomes flatter with increasing distance from AGN Opposite to effect of synchrotron losses Velocity-dependent particle acceleration?

Laing & Bridle (2013)

31

Summary and Next Steps

- Weak flavour jets can be described in quantitative detail
 - Deceleration and transverse velocity gradients
 - Field evolution longitudinal to toroidal
 - Flattening spectrum and decreasing particle acceleration
- First attempt at strong-flavour jet model implies
 - Initially very fast (Γ = 8) spine and slower shear layer
 - On-axis deceleration possible but not certain
- Strong-flavour jets are hard to study, even with the new generation of arrays, but watch this space

