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1st order Fermi at shocks

Discovered for nonrelativistic shocks in 1977/8 (Krymsky, Bell,

Blandford & Ostriker, Axford, Leer & Skadron)

Now called “DSA”, widely applied to non-relativistic shocks

(e.g., SNR, galaxy clusters)

Applied to relativistic shocks in late 80’s, and ultra-relativistic

shocks in 00’s

Why the delay?
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Anisotropy

Test-particle, power-law index depends on balance between

energy gain and escape⇒ need to know angular distribution.

Isotropy⇐⇒ diffusion, OK for vshock/v ≪ 1.

When vshock/c ∼ 1, impossible for particles to be isotropic in

both upstream and downstream frames simultaneously.

Can be solved by 3 methods: explicit, ‘random’ fields;

Monte-Carlo (stochastic scattering); eigenfunctions.

Also a problem for nonrelativistic, perpendicular shocks.a

aPlease ask afterwards!



Monte-Carlo

Comparison of MC/analytic

angular distributions

Achterberg et al

MNRAS 328, 393 (2001)



2D PIC simulations, pair plasma

Spitkovsky (2008)

Martins et al (2009)

Unmagnetized e+e−

plasma

Bulk Γ ≈ 30

Field generated by

Weibel instability

Ab initio demonstration

of 1st order Fermi

process at a shock front
1% of particles in power-law tail

Cut off at ∼ 100× peak, growing

in time

d ln N/d ln γ = −2.4 ± 0.1
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Oblique shocks

Sironi & Spitkovsky (2009)

Magnetized e+e− plasma

Shock generated by

magnetic reflection

Qualitative agreement

with test-particle picture

Issues remain concerning the generation and saturation of

turbulence, acceleration rates, maximum energy etc.
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Other dissipation mechanisms

Dissipation requires short length/timescale structure.

Velocity/density fluctuations (→ internal shocks, shear)

Embedded magnetic fluctuations (→ internal current sheets)

Called reconnection in an MHD model. Predicts hard spectral

indices (Sironi 2014) and potentially very high energy cut-offs

(Cerutti et al 2014)

Proceeds differently in an under-dense plasma (no flux

freezing, electromagnetic superluminal modes present)

(Arka, Mochol, Amano & JK, 2011 – 2013)
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Superluminal wave damping

Three dimensionless jet parameters:

1 (Mass-loading)−1 µ = L/Ṁc2 (≡ σM)

2 Magnetization σ0 = Poynting flux/K.E. flux

3 A parameter describing the jet composition: e/m

Cross-jet potential × e/mc2: a0 = eBr/mc2

(Dimensionless luminosity/unit solid angle)1/2
:

a0 = (4πL/Ωs)
1/2
(

e2/m2c5
)1/2

Constraints/Estimates:

1 a0 = 3.4 × 1014
√

4πL46/Ωs

2 σ0 . µ
2/3 (for a supermagnetosonic jet)

3 Pair multiplicity κ0 = a0/(4µ) > 1
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Waves in a conical e± jet/beam

Fluctuation wavelength 2πŻ a0 ≫ µ ≫ σ ≫ 1

Over-dense
r = Ża0/µ

Under-dense
r = Ża0/σ0 r = Ża0

Subluminal
constant γ, σ ≈ σ0 acceleration

zone
particle
dominated

Superluminal
no propagation propagation

κ0 = 1 4 × 1015cm 1020cm

κ0 = 1000 4 × 1019cm 1022cm

(Estimates for M87: L = 1041erg/s, Ωs/4π = 0.0006, Ż = rg = 1015cm)
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Two-fluid simulations

Beyond MHD: simplest description that includes superluminal,

electromagnetic modes is one with two charged fluids.

Amano & Kirk ApJ (2013)

Relativistic, finite temperature electron & positron fluids

1D in space, 3D in momentum and EM fields

Initial conditions:

Left half: circularly polarized, cold, static shear, γ = 40,

σ = 10, λgyro/λ =
√
σ
(

ω/ωp

)

≈ 4

Right half: shocked (R-H conditions) unmagnetized plasma



Electromagnetically modified shock

0

200

400

600

800

1000

1200

1400

1600

1800

ω
p
0t

1800 2000 2200 2400
x/c/ωp0

0

200

400

600

800

1000

1200

1400

1600

1800

ω
p
0t

0.0

0.5

1.0

1.5

2.0

2.5

lo
g 1

0
(n

)
0.0

0.2

0.4

0.6

0.8

1.0

S

Γ = 40

σ = 10

ω = 1.2ωp



Implications

“Thermal” particles emit narrow band radiation in the

precursor

→GeV flares in γ-ray binaries (Mochol & JK, ApJ 2013)



Implications

“Thermal” particles emit narrow band radiation in the

precursor

→GeV flares in γ-ray binaries (Mochol & JK, ApJ 2013)

Superluminal turbulence⇒ wiggler (Teraki et al ApJ 2015)



Implications

“Thermal” particles emit narrow band radiation in the

precursor

→GeV flares in γ-ray binaries (Mochol & JK, ApJ 2013)

Superluminal turbulence⇒ wiggler (Teraki et al ApJ 2015)

A subshock remains: particles injected by reflection in the

precursor wave subsequently undergo Fermi-type

acceleration→ s ≈ 2.3 recovered?



Injection at an electrodynamically modified shock front
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Γ = 40, σ = 10, reflection probability ≈ 50%
(Giacchè & JK in prep)
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Summary

Relativistic, MHD shocks accelerate particles in low σ flows

(perpendicular shock geometry generic, anisotropy crucial.)

Depends on microphysics of scattering.

Relativistic reconnection a viable mechanism in high σ flows

(but not discussed here!)

Under-dense, high σ flows allow superluminal modes.

Important for pulsars/PWN, maybe also for AGN.⇒
acceleration in electromagnetically modified shocks,

potentially observable signatures.



Stationary solution

Separation of variables:

f(z, ~p) = p−s
∑

i

cie
Λizωg/vQi(µ, φ)

Λi (v̂z − u)Qi =

{

−
∂

∂φ
+

1

2η

[

∂

∂µ

(

1 − µ2
) ∂

∂µ
+

1

1 − µ2

∂2

∂φ2

]}

Qi

(v̂z =
√

1 − µ2 sinφ, η = ωg/νcoll is the inverse “collisionality”.)

Similar to method used for relativistic shocks (ApJ 2000).

But two-parameter (η, u), two-dimensional (µ, φ) and non

self-adjoint problem.

Approximate by retaining only the ‘leading’ upstream

eigenfunction.



Approximate analytic solution for us ∼ 1/η ∼ ǫ ≪ 1

Q = eΛv
√

1−µ2 cosφPs0
0

(

µ,−Λ2/2
)

Psm
n : angular, oblate, spheroidal

wave function.

Power-law index fixed by b.c.’s,

series in ηu:

s =
3r

r − 1
+

9 (r + 1)

20r(r − 1)
η2u2

s + O
(

η4u4
s

)

(r = compression ratio)

M. Takamoto & JK, ApJ submitted

Leading eigenfunction,

ηus = 2,

φ

µ

Anisotropic at order ǫ0,

as suggested by

Schatzman (1963).


