Constraining jet physics using total intensity and polarimetric radio observations

Talvikki Hovatta Aalto University, Metsähovi Radio Observatory Finland

Many thanks to M. Aller, H. Aller, E. Angelakis, P. Hughes, I. Liodakis, I. Myserlis, V. Ramakrishnan et al. for material presented in this talk

Motivation / Outline

- Lots of radio data available from various longterm (decades!) monitoring programs
- How can single-dish radio observations be used to constrain jet physics?
 - E.g., Doppler beaming, flow parameters, viewing angle, magnetic field order, shock structure...
- Multifrequency and polarization data are the key

Spectral energy distribution

Blazar monitoring programs

Major Blazar Monitoring Programs

Monitoring Program / Sample	Frequencies/Bands	Homepage				
MOJAVE-1 (flux density-limited 1.5 Jy sample)	15 GHz VLBI	http://www.physics.purdue.edu/MOJAVE/MOJAVEtable.html				
MOJAVE-4 (current monitoring sample)	15 GHz VLBI	http://www.physics.purdue.edu/MOJAVE/MOJAVEIVtable.htr				
TANAMI	8.4, 22 GHz VLBI	http://pulsar.sternwarte.uni-erlangen.de/tanami/ http://www.bu.edu/blazars/VLBAproject.html				
BOSTON U.	43 GHz VLBI, optical					
F-GAMMA	2 - 200 GHz, IR, optical	http://www.mpifr-bonn.mpg.de/div/vlbi/fgamma/fgamma.html				
OVRO	15 GHz	http://www.astro.caltech.edu/ovroblazars/				
UMRAO	4.8, 8, 15 GHz	http://www.astro.lsa.umich.edu/obs/radiotel/umrao.php				
METSAHOVI	22, 37 GHz	http://www.metsahovi.fi/quasar/				
MEDICINA/NOTO	5, 8, 22, 43 GHz	http://www.mpifr-bonn.mpg.de/staff/ubach/bmonit/				
SIMEIZ	22, 37 GHz					
MARMOT	86 GHz, optical	http://www.astro.caltech.edu/marmot				
SMA Calibrator List	86, 300, 350 GHz	http://sma1.sma.hawaii.edu/callist/callist.html				
TUORLA	Optical	http://users.utu.fi/kani/1m/index.html				
STEWARD	Optical	http://james.as.arizona.edu/~psmith/Fermi/				
MAPCAT	Optical	http://w3.iaa.es/~iagudo/research/MAPCAT/				
PERUGIA	Optical	http://astro.fisica.unipg.it/PGblazar/tabella2000.htm				
SMARTS	Optical	http://www.astro.yale.edu/smarts/glast/				
ST. PETERSBURG	Optical	http://www.astro.spbu.ru/staff/vlar/OPTlist.html				
GASP	Optical	http://www.oato.inaf.it/blazars/webt/				
CATALINA SKY SURVEY	Optical	http://nesssi.cacr.caltech.edu/catalina/Blazars/Blazar.html				
KAIT	Optical	http://128.32.15.133/kait/agn/				
ROBOPOL	Optical	http://robopol.org/				
SWIFT XRT	X-ray	http://www.swift.psu.edu/monitoring/				
1LAC (1st Fermi AGN Catalog)	>100 MeV	http://www.asdc.asi.it/fermi1lac/				
2LAC (2nd Fermi AGN Catalog)	>100 MeV	http://www.asdc.asi.it/fermi2lac/				

http://www.physics.purdue.edu/MOJAVE/blazarprogramlist.html

List maintained by Matt Lister

talvikki.hovatta@aalto.fi

Various observatories

Image credits: TH, UMRAO, Metsähovi

talvikki.hovatta@aalto.fi

Krakow, April 23, 2015

Multifrequency radio light curves

talvikki.hovatta@aalto.fi

Krakow, April 23, 2015

Variability dominated by the radio core

Doppler boosting factors

Assumptions:

- Logarithmic variability • timescale stays constant during flares (Teräsranta & Valtaoja 1994)
- Flare rise time = size of the • emission region (Lähteenmäki et al. 1999)
- Emission region is in • equipartition $T_{int} = T_{eq} =$ 10¹¹K (Readhead 1994)

Different assumptions

Assumptions:

- Jet Lorentz factors follow a power law distribution (Lister & Marscher 1997)
- Pure luminosity evolution function (Padovani & Urry 1992)
- Simulations used to match apparent speed and redshift distributions
- Comparison of various Doppler factor estimates

Liodakis & Pavlidou, 2015

Obtaining Doppler factors for more sources

- OVRO 40-m program is observing ~1800 sources at 15 GHz since 2008
- Twice / week sampling
- All Fermi sources from 1FGL and 2FGL
- MCMC approach to obtain uncertainties for D_{var}
- MOJAVE 15 GHz observations to constrain T_{int}

Physical modeling

- Radiative transfer modeling (Hughes, Aller & Aller, 2015)
- 3 frequencies (4.8, 8, 14.5 GHz)
- Includes polarization!

Parameter	Constraint
Low energy cutoff (γ_i)	EVPA spectral behavior
Axial B field (B z)	EVPA and P%
Bulk Lorentz Factor (γ _f)	P%
Viewing Angle (θ)	P%
Shock obliquity (η)	ΔΕVΡΑ
Shock sense (F or R)	Doppler Factor and β_{app}
Shock length (l)	duration of flare in S
Shock Compression (κ)	ΔS and P%
Shock onset (t _o)	start of flare in S or P

Aller et al. 2014

See Poster by M. Aller!

Constraining parameters (1)

Different amount of axial magnetic field

Constraining parameters (2)

Change in the viewing angle

Best-fit model

Aller et al.

THE ASTROPHYSICAL JOURNAL, 791:53 (14pp), 2014 August 10

Figure 4. Comparison of the data and the simulation for the 2009–2010 event in 0420–014. Left: daily averages of the total flux density, fractional linear polarization, and EVPA. Upward arrows along the time axis mark the shock start times. A downward arrow at the top of the lower panel marks the time of peak γ -ray photon flux. Right: simulated light curves. The computations have been carried out at three harmonically related frequencies separated by $\sqrt{3}$ that correspond to the UMRAO observing frequencies of 14.5, 8.0, and 4.8 GHz; the symbols follow the convention used for plotting the UMRAO data.

	Table 2 Parameters for Individual Shocks: 0420–014			Parameter	0420-014	
See Poster by M. Aller!				Spectral index (α) Fiducial Lorentz factor (γ_c)	0.25 1000	
	Shock	1	2	3	Cutoff Lorentz factor (γ_i) Bulk Lorentz factor	50 5.0
	Start (t ₀) Length (l)	2009.25 10.0	2009.6 15.0	2009.95 10.0	Number of shocks Shock obliquity Shock sense	3 90° F
	Compression (κ) Location of S_{max}	0.8 0.22	0.66 0.64	0.65 1.06	Viewing angle (θ_{obs}) β_{app} Axial magnetic field*	4° 11c 16%

Wider spectral coverage

- F-GAMMA
 - Almost 90 Fermi sources
 - 2.64 142 GHz at 10 bands
 - Cadence 1/1.3 months
- RadioPol
 - Linear polarization at 2.64, 4.85, 8.35, 10.45 and 14.6 GHz
 - Circular polarization at 2.64, 4.85, 8.35, 10.45, 14.6, 23.05 GHz

Angelakis et al. 2010, astro-ph.CO/1006.5610

Fuhrmann et al. 2007, 2007, AIP Conf. Series, Vol. 921, 249–251

Myserlis et al 2014, arXiv1401.2072M

RadioPol statistics

Linear polarization event

Polarization is the key

- New Polarization receiver installed on the OVRO 40-m in May 2014
- 13-18 GHz, 1800 sources
- Calibration on-going

Spectral types and evolution

Physical picture

Courtesy of E. Angelakis

Modeling of flare evolution

talvikki.hovatta@aalto.fi

Dense sampling shows details

Gamma-ray connection

Ramakrishnan+ in prep.

talvikki.hovatta@aalto.fi

See Poster by V. Ramakrishnan!

Gamma-ray connection

Summary

- Single-dish radio observations CAN be used to constrain jet physics
- Modeling the variations in total intensity and polarization allow constraining:
 - Doppler beaming factors, magnetic field structure, viewing angle, shock parameters etc.
- These can be used to aid the multifrequency modeling of the sources

