Diversity of Multi-wavelength Behavior of Relativistic Jet in 3C 279 Discovered During the Fermi Era

Rapid Variability of Blazar 3C 279 during Flaring States in 2013-2014 with Joint *Fermi*-LAT, *NuSTAR*, *Swift*, and Ground-Based Multi-wavelength Observations
Hayashida, Nalewajko, Madejski, Sikora+,2015, *ApJ*, in press (arXiv:1502.04699)

Relativistic Jets: Creation, Dynamics and Internal Physics in Krakow, Poland, 23 April 2015

Masaaki Hayashida (Institute for Cosmic-Ray Research, the University of Tokyo)

Emission from Jets (FSRQ)

Outline

- MWL observations in 2013-2014 for 3C 279 during the flaring states
 - Fermi-LAT, NuSTAR, Swift and optical, radio
- The First NuSTAR observations for the source
- origin of the X-ray emission
- "orphan" γ-ray flare in 2013 December.
- where is the gamma-ray emission site?
- what is the dominant component in jet?
- what is the acceleration mechanism?

"where is gamma-ray emission site?", ICRR

FSRQ 3C 279 (z=0.536)

3C 279 activity for 6 years

2008 August – 2014 August measured by Fermi-LAT

Gamma-ray flare activity reported in Atel

- 2013/12/21: #5680 Fermi LAT detection of a GeV flare from the FSRQ 3C 279
- 2014/04/01: #6036 Fermi LAT detection of renewed GeV activity from blazar 3C 279

Fermi-LAT light curve

Flare profile

- asymmetric profile
- hourly scale variability:
- $(2hr \rightarrow R [emission region size] < ~ 4x10^{15} (\Gamma/20) cm)$ ^{23 April 2015} $(2hr \rightarrow R [emission region size] < ~ 4x10^{15} (\Gamma/20) cm)$

Flare 3 (ToO)

 2.6 ± 0.6

 5.0 ± 0.8

 10.5 ± 6.6

 216 ± 19

short time variability in FSRQs

PKS1510-089 (Saito+13 ApJL)

LAT Spectrum

(042.0 043.0)									
Period B (0.2 days)	PL	1.71 ± 0.10			407		117.6 ± 19.7	1	
Dec 20,9h36 - 14h24	LogP	1.12 ± 0.31	0.19 ± 0.09		413	6.0	94.5 ± 18.1	(10.4 GeV)	
(646.4 - 646.6)	BPL	1.41 ± 0.17	3.01 ± 0.91	3.6 ± 1.6	415	7.6	100.6 ± 18.4		
Period C (3 days)	PL	2.29 ± 0.13			219		17.1 ± 2.8	1	
Dec 31,0h - Jan 02,0h	LogP	2.29 ± 0.16	0.00 ± 0.06		219	< 0.1	17.1 ± 2.9	(GeV)	
(657.0 - 660.0)	BPL	2.22 ± 0.42	2.32 ± 0.20	0.34 ± 0.27	219	< 0.1	16.9 ± 3.1		
Period D (0.267 days)	PL	2.16 ± 0.06			1839		117.9 ± 7.1	1	
Apr 03,5h03 - 11h27	LogP	2.02 ± 0.08	0.10 ± 0.05		1840	5.3	114.9 ± 7.1	(13.5 GeV)	
(750.210 - 750.477)	BPL	2.02 ± 0.09	2.89 ± 0.45	1.6 ± 0.6	1843	8.0	115.1 ± 7.7		

Hard spectra in FSRQs

osmic Ray Researc

Iniversity of Tokyo

(Pacciani+14, ApJ, flaring FSRQs)

Source	Period A	Δ_t	No. of HE	Chance	/	$\Gamma_{\rm ph}$		Δ_t (days)	Prob
		(days)	Photons	Prob.			for Period		$shape_A = shape_B$	
				(%)****	/	(0.2–10 GeV)	В	С	D	(%)
PKS 1502+106	2009 May 6 05:20-2009 May 6 13:11	0.326 (0.38)*	2	0.27/32.3		1.99 ± 0.31	4	8		<3.4
CTA 102	2012 Sep 22 18:12-2012 Sep 22 21:55	0.155	4	0.16/2.3****		1.73 ± 0.14	3	4***	4	0.36
3C 454.3	2013 Sep 24 15:00-2013 Sep 25 04:12	0.55	5	4.1/15.3	1.7	$7 \pm 0.17 \ (1.84 \pm 0.08)^{*}$	* 3	3	3	< 0.053
PKS 0805-07	2009 May 15 00:21-2009 May 15 08:26	0.337 (0.38)*	4	0.028/0.82	1.5	$0.000 \pm 0.0000 \pm 0.00000000000000000000$	* 8	8		0.97
4C +382491 April	2015 Jul 3 15:39–2011 Jul 3 18:56 №	a sa 136 (939) *h	nida (I Ĉ RR) i	n 0.088/24 0115 k	Krak	$_{\rm QW}$ 1.85 ± 0.23	4	8		<114

Multi-band light curve

X-ray bands (Swift+NuSTAR)

Two NuSTAR observations (1: Dec.18 2013, 2: Jan.1 2014) : ~ 40 ks exposure for each

X-ray bands (Swift+NuSTAR)

Two NuSTAR observations (1: Dec.18 2013, 2: Jan.1 2014) : ~ 40 ks exposure for each

- EIC by low energy electrons? (should not be variable in a day)
- SSC? (too hard of Γ_x =1.37 in the Swift-XRT band)
- another region? (slower (sheath) part?)

Broad band SED

University of Tokyo

(see details in Nalewajko's talk tomorrow)

emission model for Period B

- 1. Gamma-ray emission site should be inside BLR (< 0.1 pc)
- 2. very matter dominated jet: $L_B/L_{jet} \sim 10^{-4}$
- 3. hard index (γ -ray band) in the fast cooling regime
 - required very hard index for electron injection spectrum: p=1

versity of Tokyo

emission model for Period B

1. Gamma-ray emission site should be inside BLR (< 0.1 pc)

- very matter dominated jet: $L_B/L_{iet} \sim 10^{-4}$ 2.
- hard index (γ -ray band) in the fast cooling regime 3.
 - required very hard index for electron injection spectrum: p=1

iversity of Tokyo

D2

1.1

30

1

0.14

1.6

100

2.5

4

6000

D1

25

1

1

200

2.5

5

2000

0.03

1.75

2013-14 (this work)

emission site is not unique!

Masaaki Hayashida (ICRR) in Jets 2015 Krakow

Just examples

See also Fink&Demer+10 for 3C454.3 and many other works

Masaaki Hayashida (ICRR) in Jets 2015 Krakow

emission model for Period B

ור	iic model: BLAZAR (Moderski+2003)										
	PARAMETERS OF THE SED MODELS PRESENTED IN FIG. 9.										
	Model	А	B1	B2	С	D1	D2				
	<i>r</i> [pc]	1.1	0.03	0.12	1.1	0.03	1.1				
	Γ_{j}	8.5	20	30	10.5	25	30				
	$\Gamma_{\mathbf{j}} \theta_{\mathbf{j}}$	1	0.61	0.34	1	1	1				
	<i>B</i> ′ [G]	0.13	0.31	0.3	0.13	1.75	0.14				
	p_1	1	1	1	1	1	1.6				
	γ_1	1000	3700	2800	1000	200	100				
	p_2	2.4	7	7	2.4	2.5	2.5				
	γ_2	3000	-	-	3000	2000	6000				
	<i>p</i> ₃	3.5	_	_]	3.5	5	4				

- 1. Gamma-ray emission site should be inside BLR (< 0.1 pc)
- 2. very matter (kinetic power) dominated jet: $L_B/L_{jet} \sim 10^{-4}$
- 3. hard index (γ -ray band) in the fast cooling regime
 - required very hard index for electron injection spectrum: p=1

Regions of AGN Jet Propagation

slide by Y.Mizuno

Poynting flux dominated? Kinetic energy flux dominated?

- if jet is derived by the magnetic field (e.g., Blandford-Znajek process) ,,,,
 - \rightarrow jet should be Poynting-flux dominated jet < 10³ r_g (= inside BRL)
- Leptonic models can explain well the broad band SED inside BLR (0.03 pc < $10^3 r_g$ for $5 \times 10^8 M_{solar}$)
 - the emission model results suggest kinetic energy dominated jets (some models with equipartition see e.g., Dermer+14, *ApJ*, *782* for 3C 279)
- Hadronic models require stronger magnetic fields (10-100 G) than the Leptonic models (0.01-1 G), but also requires very high power of relativistic protons, 10⁴⁹ erg/s (e.g.,Zdziarski & Boettcher 15)

emission model for Period B

- 1. Gamma-ray emission site should be inside BLR (< 0.1 pc)
- very matter dominated jet: $L_B/L_{iet} \sim 10^{-4}$ 2.
- 3. hard index (γ -ray band) in the fast cooling regime
 - required very hard index for electron injection spectrum: p=1

iversity of Tokyo

D2

1.1

30

1

0.14

1.6

100

2.5

4

6000

1

hard (p<2) electron index

p: injected electron index $p \ge 2$: normal standard shock (Fermi-I) acceleration $too \ soft!!$

magnetic reconnection

Our result:

jet magnetization: $\sigma < 10^{-3}$

- the reconnection will efficiently work in this condition?
- very localized acceleration sites?
 - can generate 10⁴⁸ erg/s emission?

25

Stochastic acceleration (Fermi-II)

 \mathbb{D}

(Model: Asano+2014, ApJ 784, 64)

- · Steady outflow
- Continuous shell ejection with a width of $R_0\!\!\!\!/\,\Gamma$ in commoving frame
- Electron injection from $R=R_0$ to $2R_0$ with stochastic acceleration
- Turbulence Index: q=2 (hard-sphere scattering)
- Both injection and acceleration stop at R=2R₀

Physical Processes

- Electron injection
- Stochastic acceleration
- Synchrotron emission and cooling
- Inverse Compton emission and cooling
- Adiabatic cooling $(V \propto R^2)$
- Photon escape
- No electron escape!

$$D(\varepsilon_{\rm e}) = \frac{\bar{\xi}\pi ec\varepsilon_{\rm e}k|\delta B^2|_k}{8B} \equiv K\varepsilon_{\rm e}^q$$

Hereafter, q=12 , $\theta_{\rm j}=1/\Gamma,\,\gamma_{\rm inj}=10$

$$B' = B_0 (R/R_0)^{-1}$$

Steady (base line) model

A high state in 2009 as reference

(Asano & Hayashida, in prep)

 $R_0 = 0.023 \text{ pc}, \Gamma = 15, B_0 = 7 \text{ G}$ $K \text{ (energy diffusion coefficient) } = 9 \times 10^{-6} \text{ s}^{-1}$ $N_e \text{ (electron injection rate) } = 7.8 \times 10^{49} \text{ s}^{-1}$

application for the 2013 flare

the turbulence is generated by the hydrodynamical instability?

Summary & Conclusion

- 3C 279 showed the highest γ -ray flux level in 2013-2014.
 - "orphan γ-ray flare was detected"
- where is the gamma-ray emission site?
 - inside BRL (~0.03 pc < $10^3 r_g$) for hourly scale variability at 100 MeV (both inside and outside BLR (10^{2-3} to $10^{5-6} r_a$) event by event)
- what is the dominant component in jet?
 - emission model : kinetic energy dominated : $L_B/L_{jet} \sim 10^{-4}$
 - jet simulation: Poynting-flux dominated (< $10^3 r_g$) Any ideas for this issue?
- what is the acceleration mechanism?
 - not only shock accelerations
 - stochastic acceleration (Fermi-II) can also work for rapid γ -ray flares

back up

energetics

- Lj ~ L $\gamma/(\eta \Gamma^2)$ ($\eta=0.1$)

• Lj ~ 1.5×10^{47} erg s⁻¹

• $L_{R} \simeq 1.1 \times 10^{42} \text{ erg s}^{-1}$,

L_{disk} ~ 6×10⁴⁵ erg s⁻¹

L_{Edd} ~ 8×10⁴⁶ erg s⁻¹

• M_{RH} ≃ 5×10⁸ M☉,

- Lγ ~ 6×10⁴⁸ erg s⁻¹
 - Lj/L_{disk} ≃ 25
 - $L_{\rm B}/L_{\rm J} \simeq 10^{-5}$
 - $Lj > L_{Edd}$

