The most powerful persistent engine of Nature

Gabriele Ghisellini

INAF-Osservatorio di

Brera

With:

Fabrizio Tavecchio, Laura Maraschi, Annalisa Celotti, Tullia Sbarrato

Activation/conversion

Sugar saccharose $C_{12}H_{22}O_{11}$ 1g || 4 kcal= 16.2 kJ = 1e23 eV = 4.7 eV per molecule

$$\eta = \frac{E}{mc^2} = \frac{1.6 \times 10^{11} erg}{9 \times 10^{20} erg} = 1.8 \times 10^{-10}$$

Nuclear fission

$\eta = 0.008 \times 0.1 \sim 8 \times 10^{-4}$

 $\eta = 0.1$ up to 0.3 for accreting Kerr (Thorne 1974)

Annihilation

Minimum energy

t_{lobe}

PV work / t_{sound}

1992: launch of EGRET on the Compton Gamma-ray Observatory

If you want to compare disk luminosity and jet power, the best sample is:

Blazars detected by Fermi IL_{obs, jet} with broad emission lines I L_{disk}

Shaw+ 2012: FSRQs (~220 sources) Shaw+ 2013: BL Lacs (26 with BLR)

The jet cannot have less power than what required to produce the observed luminosity:

$$P_{jet} > \frac{L_{obs}}{\Gamma^2}$$

If P_{jet} is twice as much, Γ halves. We can take P_{rad} as the minimum P_{jet} . This limit is model-independent. The jet cannot have less power than what required to produce the observed luminosity:

$$P_{jet} > \frac{L_{obs}}{\Gamma^2}$$

If P_{jet} is twice as much, Γ h We can take P_{rad} as the m This limit is model-indeper =

GG+ Nature, 2014

From P_{rad} to P_{jet}

- γ_{min} I total number of e- (and of protons, if no pairs...)
 - Presence of electron positron pairs
 - Radiative model: SSC vs EC vs baryons

From P_{rad} to P_{jet}

γ_{min} I total number of e- (and of protons, if no pairs...)
Presence of electron positron pairs
Radiative model: SSC vs EC vs baryons even more power

If one p per e-

Apparent paradox:

Jet power proportional to accretion And yet it is greater....

Blandford Znajek

 $P_{BZ} \sim a^2 B^2 M^2$

Blandford Znajek

Blandford Znajek

Rotation > Accretion

B-field amplified by accretion can tap the spin energy of the hole

This process is very efficient

The B-field "does not work", the jet power comes from the BH spin

Yet it is the catalyst for the process. No B no jet.

But B is linked to accretion, that's why P_{iet} is propto L_d

Shows results from the fiducial GRMHD simulation A0.99fc for a BH with spin parameter a = 0.99; see Supporting Information for the movie.

Tchekhovskoy A et al. MNRAS 2011;418:L79-L83

Shows results from the fiducial GRMHD simulation A0.99fc for a BH with spin parameter a = 0.99; see Supporting Information for the movie.

On average: 1 g in 1 1.5 c² erg out

Tchekhovskoy A et al. MNRAS 2011;418:L79-L83

© 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS

MONTHLY NOTICES of the Royal Astronomical Society LETTERS

Conclusion

P_{jet} ~ Mc², larger than L_d

The jet uses to energy stored in the rotation of the hole, that was provided by accretion. But it takes it out faster than when it was put in.