

Unconventional Views of Jets

(some goals in next the 10-years)

C. C. Teddy Cheung Naval Research Laboratory Energy Transport in Radio Galaxies and Quasars ASP Conference Series, Vol. 100, 1996 P. E. Hardee, A. H. Bridle, and J. A. Zensus (eds.)

← 1996

Overview

P. A. G. Scheuer

Mullard Radio Astronomy Observatory, Cavendish Laboratory, Madingley Rd., Cambridge CB3 0HE, U.K.

Abstract. A survey of mostly recent developments in the state of our knowledge and/or understanding of energy transport towards AGN from a gas disc and out of AGN into the jets, hot spots, and lobes of radio galaxies and quasars.

1. Introduction

The big questions remain:

1. Do most/all galaxies have an AGN phase?

← Clues from γ-rays and X-rays?

- 2. Why do AGN produce powerful jets if and only if the host galaxy is an elliptical?
- 3. Why the FR I—FR II boundary? ?
- 4. What makes the magnetic field, and why is $|\mathbf{B}| \approx B_{equipartition}$?
- 5. Are jets p^+ e^- or e^+ e^- (or something else)? ?
- 6. Do large-scale jets move at $\gamma \approx 10$, or do they slow down to $\gamma < 1.5$? **Two tests**

Topics

- New Light in Lobes, Episodes
 - γ-ray lobes in radio galaxies, young radio sources, spiral hosts
 - Episodic activity (nascent jets), other AGN signatures
- Counter-jets will we see them (all)?
 - Detections and measurements of N x 1000's jet-counter-jets
 - Extra credit: nagging questions
- Superluminal motion for the patient
 - Direct proper motion measurements on >10's kpc scales, deprojected, on many N decade timescales

*For broader jet discussions, see, e.g. SKA meeting proceedings (Agudo et al. 2015; Kapinska et al. 2015, Laing 2015)

The Unseen Light in Lobes

Fermi data reveal giant gamma-ray bubbles

Fermi y-ray Bubbles (Su et al. 2010, Ackermann et al. 2014)

The Unseen Light in Lobes

Cen A γ-ray lobes (Abdo et al. 2010)

A 2nd γ-ray Radio Galaxy

Fornax A

VLA 1.5 GHz image (Fomalont et al. 1989) 2FGL and 3FGL error ellipses (take 2FGL flux as representative)

LAT γ -ray source is *extended*, *lower* L_{γ} *than radio* See: J. Perkins et al. poster

Young Radio Galaxies?

3FGL error ellipse overlaid

3FGL (Acero et al. 2015), 3LAC (Ackermann et al. 2015)

3C286 Radio Structure

 Widely different lobe properties, different ambient radiation fields relevant at different scales, or hadronic?

Nearby γ-rays lobes with CTA?

Inner lobes likely source of γ -rays in quasars 4C+55.17, 3C286

Nascent Jets?

ROSAT detected first outburst (e.g., Komossa & Bade 1999) New outburst(s) seen with Swift (Campana et al. 2015; Grupe et al. 2015)

- Multiple tidal disruption events (TDEs) – low rate / duty cycle, e.g. seen in IC 3559 in X-rays
- Relativistic TDEs considered thus far, extrapolated from Swift J1644 (e.g., Donnarumma & Rossi 2015) -- SKA1 radio survey `non-relativistic TDEs' (ADAF, RIAF)
- Terahertz peaked sources (TPS) / sub-millimeter ?

Counter-jets: Radio Galaxies

*Faraday rotation measure gradients "especially if the gradient is reversed in a counter-jet..." (Blandford 1993)

Counter-jets: in Quasars ?

Beaming Constraints

also core/jet prominences (Hardcastle et al. 1999, Mullin & Hardcastle 2001)

Problems & Obstacles

- Knots in quasar counter-jets Candidates ratios may be smaller, thus (β,Γ) larger
 - Jet bending increases detectability (i.e., hard to find counter-jets with straight approaching jets)
 - Environmental (deflection) or changing angle
- Transverse velocity structures ?
- IC/CMB X-rays?

• Two Experiments ...

How will SKA1 be better than today's best radio telescopes?

www.skatelescope.org 🖬 Square Kilometre Array 🗖 @SKA_telescope 🕄 W The Square Kilometre Array As the SKA isn't operational yet, we use an optical image of the Milky Way to illustrate the concepts of increased sensitivity and resolution. https://www.skatelescope.org/news/worlds-largest-radio-telescope-near-construction/

1. Expected Counter-jets (1 mJy jet example)

Diverging predictions for slow and fast jets.

*parsec-scale absorption may affect VLBI counter-jet measurements (e.g., Jones & Wehrle 2002)

1. Expected Counter-jets (1 mJy jet example)

Diverging predictions for slow and fast jets.

1. Expected Counter-jets (1 mJy jet example)

Diverging predictions for slow and fast jets.

A. Detectable counter-jets at **ALL** angles if kpc-scale jets are *slow* (Γ =2) B. Counter-jets *very* difficult to detect at Θ < 20-30° if jets are fast.

Some Naive Considerations for SKA1 MID

1.4 GHz flux limits = 1.3, 0.8, 0.2, 0.05 Jy with decreasing sky coverage

- Image to 0.5 µJy limit everything >50 mJy
- Piggyback on imaging surveys of predetermined fields
- <u>Goal</u>: N x 1000 sources, from some combination

Intrinsically symmetric jets, or environmental factors?

Extra Credit: nature vs. nurture

- Is there a optical host luminosity dependence of FR1/FR2 division (Owen 1993, Ledlow & Owen 1996, Bicknell 1995, Ghisellini & Celotti 2001)? See Lin et al. (2010), Gendre et al. (2013)
- How prevalent are spiral-hosted FR2 radio galaxies? (Bagchi et al. 2014, Mao et al. 2015; see Morganti et al. 2011)
- Are jets detected always on the 'FR1' side in Hybrid-morphology radio galaxies (HYMORs; Gopal-Krishna & Wiita 2000, Gawronski et al. 2006, Ceglowski et al. 2015)
 - Is there a Laing-Garrington effect in HYMORS?
- Statistics of episodic radio sources like doubledoubles, X-shaped

2. Superluminal Motion for the Patient

3C279 knot D at 0.6" = 3.8 kpc, projected (10's kpc deprojected)

*Optical knots on these scales detected with HST can also be considered

2. Superluminal Motion for the Patient

PKS 1510-089 knot at 0.3" = 1.5 kpc, projected (10's kpc deprojected)

*VLBI 20-30c apparent velocities imply small viewing angles with deprojected sizes ~1-1.5 Mpc

 $2-\sigma$ proper motion detections

Source	Deprojected	μ (β = 10)
3C279	44 kpc , Θ = 5°	0.32 mas/yr
PKS 1510-08	17 kpc , Θ = 5°	0.45 mas/yr

 VLBI, β_{max} = 20.6, 28.0, respectively (MOJAVE; Lister et al. 2009)

 Superluminal motions already measured on >1 kpc-scales, deprojected for closest aligned blazars, Θ < 2° (see e.g. Homan et al. 2003)

How will SKA1 be better than today's best radio telescopes?

www.skatelescope.org Square Kilometre Array 🛛 @SKA_telescope 🕄 Twe The Square Kilometre Array As the SKA isn't operational yet, we use an optical image of the Milky Way to illustrate the concepts of increased sensitivity and resolution.

 $2-\sigma$ proper motion detections

Source	Deprojected	μ (β = 10)
3C279	44 kpc , Θ = 5°	0.32 mas/yr
PKS 1510-08	17 kpc , Θ = 5°	0.45 mas/yr

 VLBI, β_{max} = 20.6, 28.0, respectively (MOJAVE; Lister et al. 2009)

 Superluminal motions already measured on >1 kpc-scales, deprojected for closest aligned blazars, Θ < 2° (see e.g. Homan et al. 2003)

→ SKA1 immediately improves sensitivity to proper motions

Energy Transport in Radio Galaxies and Quases ASP Conference Series, Vol. 100, 1996 P. E. Hardee, A. H. Bridle, and J. A. Zensus (eds.) 1996: 2015: 2025 →

Overview

P. A. G. SCHEUER

Mullard Radio Astronomy Observatory, Cavendish Laboratory, Madingley Rd., Cambridge CB3 0HE, U.K.

Abstract. A survey of mostly recent developments in the state of our knowledge and/or understanding of energy transport towards AGN from a gas disc and out of AGN into the jets, hot spots, and lobes of radio galaxies and quasars.

1. Introduction

The big questions remain:

- 1. Do most/all galaxies have an AGN phase?
- 2. Why do AGN produce powerful jets if and only if the host galaxy is an elliptical?
- 3. Why the FR I—FR II boundary?
- 4. What makes the magnetic field, and why is $|\mathbf{B}| \approx B_{equipartition}$?
- 5. Are jets p^+ e^- or e^+ e^- (or something else)?
- 6. Do large-scale jets move at $\gamma \approx 10$, or do they slow down to $\gamma < 1.5$?

- A multi-spectral view of AGN phases/episodes, young and old, in all galaxy types
- Within reach: how relativistic are jets on >10's kpc-scales via direct measurements, or limits, on jet/counter-jets and proper motions. Bearing on particles, field, energy transport.

Homework – due April 24, 2025

- Informed by γ-ray detections of lobes at all 7. scales in widely varying systems, (re-)evaluate commonly adopted high-energy₈. emission mechanisms
- 2. Establish rate of AGN activity in otherwise inactive galaxies (X-rays, UV/optical, and radio)
- 3. What hidden signatures of AGN at unexplored wavelength regimes?
- 4. Find radio counter-jets in well-aligned lowpower jets with e-VLA
- 5. Prepare large (N =1000+), low-frequency selected sample for SKA1 :
 - detect jets and counter-jets, down to 0.5 μJy, derive ratios
 - 2. constrain characteristic jet speed (maximum, and range)
 - 3. Determine possible environmental factors
- 6. Determine the conditions where Owen-Ledlow dependence holds

- Establish statistics of FR1 and FR2's in spiral hosts
- Establish statistics of HYMORs
 - 1. Are jets always on the FR1 side?
 - 2. Do VLBI jets always point in the FR1 side? Or also in FR2 side?
 - 3. Laing-Garrington depolarization measurements of lobes
- 9. Establish statistics of episodic radio sources
- Identify sample of best-aligned blazars to measure superluminal motions on >10 kpcscales
 - 1. Use archival VLA data, obtain new e-VLA data now to establish intermediate time baselines
 - 2. Look back to MRTLI (Multi-Telescope Radio Linked Interferometer) = MERLIN data
 - 3. Look at HST data obtained
- 11. Measure, or constrain, on >10 kpc-scales, proper motions of <= 0.25-0.30 mas/yr

References

- 1. Abdo, A.A. et al. 2010 Sci 328, 725
- Acero, F., et al. 2015, ApJ, submitted; arXiv:1501.02003 (3FGL catalog)
- 3. Ackermann, M. et al. 2014 ApJ 793, 64
- 4. Ackermann, M. et al. 2015, arXiv:1501.06054 (3LAC catalog)
- 5. Agudo, I., et al. 2015, arXiv:1501.00420
- 6. Bagchi, J. et al. 2014 ApJ 788, 174
- 7. Bicknell, G.V. 1995 ApJS 101, 29
- Blandford, R. 1993, in Astrophysical Jets, Eds. D. Burgarella, M. Livio, C.P. O'Dea (Cambridge: Cambridge UP), 15
- 9. Bridle, A.H. et al. 1994 AJ 108, 766
- 10. Campana, S., et al. 2015, arXiv:1502.07184
- 11. Ceglowski, M., Gawronski, M., Kunert-Bajraszewska, M. 2015, arXiv:1504.00384
- 12. Cheung, C.C. 2002 ApJ 581, L15
- 13. de Pater, I., Perley, R. A. 1983 ApJ 273, 64
- 14. Donnarumma, I., Rossi, E.M. 2015 803, 36
- 15. Fomalont, E. et al. 1989 ApJ 346, L17
- 16. Garrington, S.T. et al. 1988 Nature 331, 147
- 17. Garrington, S.T., Conway, R.G. 1991 MNRAS 250, 198
- 18. Gawronski, M.P. et al. 2006 A&A 447, 63
- 19. Gendre, M.A., Best, P.N., Wall, J.V. 2010 MNRAS 404, 1719
- 20. Gendre, M.A. et al. 2013 MNRAS 430, 3086
- 21. Gopal-Krishna, Wiita, P.J. 2000 A&A 363, 507
- 22. Ghisellini, G., Celotti, A. 2001 A&A 379, L1
- 23. Grupe, D., Komossa, S., Saxton, R. 2015, arXiv:1504.01389

- 24. Hardcastle, M.J. et al. 1999 MNRAS 304, 135
- 25. Hayashida, M. et al. 2013 ApJ 779, 131
- 26. Homan, D.C. et al. 2002 ApJ 580, 742
- 27. Homan, D.C. et al. 2003 ApJ 589, L9
- 28. Jiang, D.R., et al. 1996, A&A 312, 380
- 29. Jones, D.L., Wehrle, A.E. 2002 ApJ, 580, 114
- 30. Kapinska, A.D. et al. 2015, arXiv:1412.5884
- 31. Komossa, S., Bade, N. 1999 A&A 343, 775
- 32. Laing, R. 1988 Nature 331, 149
- 33. Laing, R. 2015 PoS(AASKA14), arXiv:1501.00452
- 34. Ledlow, M., Owen, F.N. 1996 AJ 112, 9
- 35. Lin, Y.-T., Shen, Y., Strauss, M.A. et al. 2010 ApJ 723, 1119
- 36. Lister, M.L. et al. 2009 AJ 138, 1874
- 37. Mao, M.Y. et al. 2015 MNRAS 446, 4176
- 38. McConville, W. et al. 2011 ApJ 738, 148
- 39. Mullin, L.M., Hardcastle, M.J. 2009 MNRAS 398, 1989
- 40. Morganti, R. et al. 2011 A&A 535, A97
- 41. O'Dea, C.P. et al. 1988 AJ 96, 435
- Owen, F.N. 1993, Jets in extragalactic radio sources, ed. H.-J. Roser & K. Meisenheimer, Vol 421, 273
- 43. Perley, R.A., Butler, B.J. 2013, ApJS 204, 19
- 44. Su, M., Slatyer, T.R., Finkbeiner, D.P. 2010 724, 1044
- 45. Urry, C.M., Padovani, P. 1999 PASP 107, 803
- 46. Wardle, J.F.C., Aaron, S.E. 1997 MNRAS 286, 425

Acknowledgments:

Work by C.C.C. at NRL is supported in part by NASA ADAP grant 12-ADAP12-0268 and DPR S-15633-Y.

Supplement A. Owen-Ledlow Diagram

Supplement B. Spiral-hosted FR2s

J1649+2635 (Mao et al. 2015)

J2345-0449 (Bagchi et al. 2014)