

THE STRATIFIED TWO-SIDED JET OF CYGNUS A: ACCELERATION AND COLLIMATION

(Collaborators: T.P. Krichbaum, U. Bach, F. Mertens, E. Ros, V. Karamanavis, W. Alef, J.A. Zensus)

Relativistic Jets: Creation, Dynamics, and Internal

Physics - Krakow, 20-24 April 2015

/12

Relativistic jets - Open problems

How are jets launched? Where and how are they accelerated? What is the collimation mechanism?

Image credit: ESO/M. Kornmesser

What can VLBI observations of jets (still) provide?

- Speeds
- Structure
- Shape

on sufficiently small scales

STUDYING RADIO GALAXIES WITH VLBI...

Advantages

- Geometrical effects less prominent than in blazars
- Reduced relativistic boosting BUT WATCH OUT FOR DE-BOOSTING!

Disadvantages

Few compact enough objects, faint at high radio-frequencies!

Apparent β (top) and Doppler factor (bottom) vs Viewing angle θ , for various intrinsic β

Cygnus A: an ideal target!

Blue: X-ray from Chandra - **Red**: radio from VLA - **Yellow**: optical from HST and DSS.

Image Credit: X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Radio: NSF/NRAO/AUI/VLA

 Sub-parsec scale structure still bright at mm-wavelengths, including counter-jet.

 $\label{eq:linear resolution down to} $$\sim 48 \mbox{ milli-pc} $\sim 200 \mbox{ Rs!}$$ (for $M_{BH} $\sim 2.5 $\times 10^9 M_{\odot}$)$$

- Transverse resolution of both jet and counter-jet.
 - \Rightarrow study of collimation and stratification.
 - \Rightarrow test unification model.
- Only bright enough FR II with such properties.

イロトメポトメラトメラト

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

5/12

Observations (... and what they tell us)

Methods

Kinematical and transverse structure study from Global VLBI data at 7 mm (43 GHz) (13-15 dishes, 0.1 pc or $400R_S$ linear resolution)

Results

- ► **Speeds** ⇒ Parsec scale acceleration
- ► Structure ⇒Transverse stratification of speed and flux density (spine-sheath and limb brightening)
- ► Shape ⇒ Parabolic jet, cylindrical further downstream.

INTRODUCTION	KINEMATICS	TRANSVERSE STRUCTURE	DISCUSSIO
Kinematic A	ANALYSIS		
		Method (1 mas	s∼1 pc)
Oct 07		 Modelfitting 	
	J5 J6 J7	 Maps alignment & Cross-id 	lentification
C1 C1		 Calculation of proper motion apparent speeds β_{app} 	ons and
Oct 08		Apparent speed vs Distanc	e from core
, 0,		1.5	· · · · · · · · · · · · · · · · · · ·
Mar 09		1- 32	-
II			37
Nov 09			6 -
		0 - 10 J0	-
•	1 mas	0 -1 - Distance from core r [m	2 -3 as]

- Acceleration in inner ~0.8 mas of the jet, up to $\beta_{app} = 1.2 \pm 0.1$.
- Lower speeds in outer jet.
- ► 3 stationary features (C1, J0, J6), including counter-jet → () + ()
 - 6/12

LIGHTCURVES

The fast flow is getting dimmer as it accelerates (δ is decreasing!)

\Rightarrow NO INTRINSIC DECELERATION!

In the outer jet, the emission is dominated by the slower layers.

Study of the transverse structure

Transverse intensity profiles

[Jy]

- Maps restored with circular beam of 0.15 mas FWHM.
- Sliced transversally pixel by pixel (every 0.03 mas).
- Gaussian fit of the double peaked intensity profiles.

- ► Narrowing at ~2 mas ⇒ stationary feature J6
- Large and asymmetric opening angles. $\phi_j = 9.8^\circ \pm 0.3^\circ$ $\phi_{cj} = 4.7^\circ \pm 0.4^\circ$
- ► Jets expands from gap of emission (at r ~ 0.15 mas)

Jet width vs Distance from core

DISCUSSION

...Back to the speeds

Let us then consider the fast and the slow sections of the flow separately!

 \Rightarrow Slow section is also accelerating, but more mildly. Steeper gradient close to the jet axis.

Shape of the jet in acceleration region? Parabolic!

<ロト < 部ト < 主ト < 主ト ミ の < で 10 / 12

San

LOOKING AT OTHER FREQUENCIES...

Acceleration ceases at $\sim 2.5 \times 10^4 R_S$. At the same location, recollimation feature + cylindrical shape (Carilli+ 1991, VLBI@5GHz)

M87 switches from parabolic to conical...EQUILIBRIUM vs NON-EQUILIBRIUM regime (Lyubarsky's talk)

イロト イ伊ト イヨト イヨト

Food for though for FRI - FRII dichotomy?

Thank you!