Bia Boccardi

MPIfR - Bonn

the stratified two-sided jet of Cygnus A: ACCELERATION AND COLLIMATION

(Collaborators: T.P. Krichbaum, U. Bach, F. Mertens, E. Ros, V. Karamanavis, W. Alef, J.A. Zensus)

Relativistic Jets: Creation, Dynamics, and Internal Physics - Krakow, 20-24 April 2015

Relativistic jets - Open problems

How are jets launched?
Where and how are they accelerated?
What is the collimation mechanism?

Image credit: ESO/M. Kornmesser

What can VLBI observations of jets (still) provide?

- Speeds
- Structure
- Shape

on sufficiently small scales

Studying Radio galaxies with VLBI...

Advantages

- Geometrical effects less prominent than in blazars
- Reduced relativistic boosting BUT WATCH OUT FOR DE-BOOSTING!

Disadvantages

- Few compact enough objects, faint at high radio-frequencies!

Apparent β (top) and Doppler factor (bottom) vs Viewing angle θ, for various intrinsic β

Cygnus A: An ideal target!

Blue: X-ray from Chandra - Red: radio from VLA - Yellow: optical from HST and DSS.

Image Credit: X-ray: NASA/CXC/SAO; Optical: NASA/STScl; Radio: NSF/NRAO/AUI/VLA

- Sub-parsec scale structure still bright at mm-wavelengths, including counter-jet.
\Rightarrow Linear resolution down to
~ 48 milli-pc ~ 200 R $_{S}$! (for $\left.M_{B H} \sim 2.5 \times 10^{9} M_{\odot}\right)$
- Transverse resolution of both jet and counter-jet.
\Rightarrow study of collimation and stratification.
\Rightarrow test unification model.
- Only bright enough FRII with such properties.

Observations (...AND What they tell us)

Methods

Kinematical and transverse structure study from Global VLBI data at $7 \mathrm{~mm}(43 \mathrm{GHz})\left(13-15\right.$ dishes, 0.1 pc or $400 \mathrm{R}_{\mathrm{S}}$ linear resolution)

Results

- Speeds \Rightarrow Parsec scale acceleration
- Structure \Rightarrow Transverse stratification of speed and flux density (spine-sheath and limb brightening)
- Shape \Rightarrow Parabolic jet, cylindrical further downstream.

Kinematic analysis

- Acceleration in inner ~ 0.8 mas of the jet, up to $\beta_{\text {app }}=1.2 \pm 0.1$.
- Lower speeds in outer jet.
- 3 stationary features ($\mathrm{C} 1, \mathrm{~J} 0$, J6), including counter-jet.

Lightcurves

Is the outer jet decelerating?

Check out light-curves! \Rightarrow

The fast flow is getting dimmer as it accelerates (δ is decreasing!)
\Rightarrow NO INTRINSIC DECELERATION!
In the outer jet, the emission is dominated by the slower layers.

Study of the transverse structure

Stacked image from Global VLBI observations at 7 mm (2007-2009)

Transverse intensity profiles

- Maps restored with circular beam of 0.15 mas FWHM.
- Sliced transversally pixel by pixel (every 0.03 mas).
- Gaussian fit of the double peaked intensity profiles.

- Narrowing at ~ 2 mas
\Rightarrow stationary feature J6
- Large and asymmetric opening angles.
$\phi_{\mathrm{j}}=9.8^{\circ} \pm 0.3^{\circ}$
$\phi_{\mathrm{cj}}=4.7^{\circ} \pm 0.4^{\circ}$
- Jets expands from gap of emission (at r $\sim 0.15 \mathrm{mas}$)

Jet width vs Distance from core

Discussion

...Back to the speeds
Let us then consider the fast and the slow sections of the flow separately!
\Rightarrow Slow section is also accelerating, but more mildly. Steeper gradient close to the jet axis.

Jet width (from modelfit)
Distance from core $r\left[R_{s}\right]$

Speed β (top) and Lorentz factor Γ (bottom) vs Distance from core

Shape of the jet in acceleration region? Parabolic!

Looking at other frequencies...

Krichbaum +2008 , 22 GHz

Acceleration ceases at $\sim 2.5 \times 10^{4} \mathrm{R}_{\mathrm{S}}$. At the same location, recollimation
feature + cylindrical shape (Carilli+ 1991, VLBI@5GHz)
(For more on M87 structure and kinematics, see poster by F. Mertens!)

Asada\&Nakamura 2012

M87 switches from parabolic to conical...EQUILIBRIUM vs NON-EQUILIBRIUM regime (Lyubarsky's talk)

Food for though for FRI - FRII dichotomy?

Thank you！

