Resolving High Energy Emission of Jets Using Strong Gravitational Lensing

Anna Barnacka

Harvard-Smithsonian Center for Astrophysics Jagiellonian University, Kraków

X-Ray Jets - Lessons from Chandra

Increased x-ray emission by a factor of 50 from the HST-1 knot (Harris et al. 2006,2009) Core and HST-1: Separation ~ 60 pc

Flares from knots along the jets

Ambiguity of Gamma-Ray Origin

Right Ascension (hours)

Scientific Issues

- Frequency of M87-like variability
- Structure of gamma-ray jets
- Spatial origin of gamma-ray flares

M87 Gravitationally Lensed?

Deflection angle:

$$
\alpha=\frac{4 G M(r)}{c^{2}} \frac{1}{r}
$$

Images separation - a few arcseconds time delay magnification ratio

M87 as a Toy Model

- $\mathrm{zs}=1, \mathrm{z} \mid=0.6$
- Einstein radius ~ $2.2 \mathrm{kpc}\left(0.45^{\prime \prime}\right)$

60 pc $\sim 0.01 " \sim 3 \%$ Einstein radius

- Differences between the core and the HST-1:

days
 de in magnification ratio: ~ 0.2

Barnacka, A., Geller M. Dell'Antonio, I., \& Benbow, W. (June 2014, ApJ)

Lensed Gamma-Ray Jets: PKS 1830-211

Source $z=2.5$, Lens $z=0.9$

Radio Time Delay 26 ± 5 days

The first evidence of lensing at gamma-rays (Barnacka et al. 2011)

Gamma-Ray Time delay 27.1 ± 0.45 days

Gamma-ray Flares Time Delays?

Gamma-ray Flares: Time Delays

23 ± 0.5 days 19 ± 1.2 days >50 days

Barnacka, A., Geller, M., Dell'Antonio, I., et al. (April 22, 2015: arXiv:1504.05210)

Properties of the Lensed System

Barnacka, A., Geller, M., Dell'Antonio, I., et al. (April 22, 2015: arXiv:1504.05210)

Spatial Origin of Gamma-ray Flares

Barnacka, A., Geller, M., Dell'Antonio, I., et al. (April 22, 2015: arXiv:1504.05210)

Summary

- Strong Lensing:

- Powerful Tool to Resolve High Energy Universe
- Effective Spatial Resolution ~ 0.02" - improvement $\times 10000$
- Flares of PKS 1830-211:
- Flare 1 and 2 consistent with the core within 100 pc
-. Flares 3 and 4 spatial origin > 1.5 kpc from the core

Backup Slides

Gamma-ray Flare 1 and 2: Time Delays

Gamma-ray Flare 3 and 4: Time Delays

Gamma-Ray Time delay > 50 days

Monte Carlo Simulations

Lensing Maps

Position of the Core

Application of strong lensing

Barnacka, A., Geller, M., Dell'Antonio, I., \& Benbow, W. (June 2014, ApJ)

Spatial Origin of Gamma-Ray Flares

Credit: MAGIC and VERTIAS and H.E.S.S. Collaborations (2009)

