Total Flux and Polarimetric Blazar Behavior at Millimeter Wavelengths

Iván Agudo

Instituto de Astrofísica de Andalucía Granada (Spain)

with:

Clemens Thum

José L. Gómez Sol Molina Carolina Casadio Helmut Wiesemeyer

Max-Planck-Institut für Radioastronomie

Alan Marscher

Svetlana Jorstad

Millimeter emission mechanism

100 GHz -300 GHz

Total flux variability and its origin

- Blazars show extreme total flux variability at millimeter $\lambda\lambda$
- Up to one order of magnitude
- •On time scales from months to days.

Total flux variability and its origin

• Often connected to ejection of strong jet features (blobs, knots, shocks...) from the innermost regions of the source

43 GHz VLBA

PKS 1510-08

Jorstad et al. (2007)

Total Flux and Polarimetric Blazar Behavior at Millimeter Wavelengths. Iván Agudo, IAA-CSIC, Krakow, 23-04-2015

Relation to gamma-ray emission

From poster by V. Ramakrishnan

43 GHz VLBA

AO 0235+164

43 GHz VLBA

AO 0235+164

A polarimetric survey at 3.5 & 1.3mm?

• Essentially no Faraday rotation of linear polarization emission from the jet at mm wavelengths

• Essentially no Faraday depolarization

• mm emission well represents the innermost (less known) regions of jets

• 4 Stokes polarimeter @ IRAM 30m Telescope (XPOL, Thum et al. 2008)

IRAM 30m Millimeter Telescope Sierra Nevada, 2850m (Granada, Spain)

 Latest generation Rx (up to 16 GHz simultaneous BW)
~70% the collecting area of Pateau de Bure (cannot still do polarimetry) A factor ~4 larger collecting area than SMA

Observations

- Mid 2010 (also mid 2005)
- I, Q, U, V @ 3.5 & 1.3mm simultaneous observations

The sample

- 211 radio loud AGN (z≤3.4)
- S_{90GHz}>0.9Jy
- J2000.0 Dec. >-30°

Completeness

(see also Agudo et al. 2010)

- Selected as complete (flux density limited) with $S_{90GHz} \ge 1$ Jy.
- BUT, ~50% of sources <1Jy, most likely because of source variability

Simple sample properties

- Dominated by radio flat-spectrum compact AGN, i.e., by blazars.
- 152 quasars, 32 BL Lacs, 21 radio galaxies, and 6 unclassified sources.
- 110 of our sources are contained in the MOJAVE sample

POLAMI: Polarimetric AGN Monitoring at the IRAM-30m-Telescope

Almost complete source list can be checked at: http://www.iaa.es/~iagudo/_iagudo/MAPCAT.html

3C 66A AO 0235+16 3C 84 **CTA 26** 3C 111 PKS 0420-01 3C120 PKS 0528+134 S5 0716+71 PKS 0735+17 **OJ 248 OJ 49** 4C 71.07 OJ 287 S4 0954+65 PKS 1055+01 **MRK 421 PKS B1127-145** 4C 29.45 **ON 231** PG 1222+216 3C 273 3C 279 B2 1308+30 PKS 1416-076 PKS 1510-08 **DA 406** PKS 1622-29 4C 38.41 3C 345 **NRAO 530** OT +081 **BL Lacertae** 3C 446 **CTA 102** 3C 454.3

• ~40 γ -ray bright sources, most of them on list of Boston University VLBA monitoring program.

Time sampling ~2 weeks since ~mid 2007

Identical setup as for the survey, i.e. I, Q, U, V @ 3.5 & 1.3mm simultaneous

Millimeter spectral index

• Flat to optically thin between 3.5mm and 2cm ($\tilde{\alpha}^{Q}_{15,86}$ =-0.22 for quasars and $\tilde{\alpha}^{B}_{15,86}$ =-0.12 for BL Lacs)

- Only a small fraction (19% of quasars and 15% of BL Lacs) show $\alpha_{15,\ 86}{>}\ 0$

Millimeter spectral index

• Flat to optically thin between 3.5mm and 2cm ($\tilde{\alpha}^{Q}_{15,86}$ =-0.22 for quasars and $\tilde{\alpha}^{B}_{15,86}$ =-0.12 for BL Lacs)

- Only a small fraction (19% of quasars and 15% of BL Lacs) show $\alpha_{15,\ 86}{>}\ 0$

• More optically thin from 3.5 and 1.3mm ($\tilde{\alpha}^{Q}_{86,229}\text{=-}0.75$ for quasars and $\tilde{\alpha}^{B}_{86,229}\text{=-}0.56$ for BL Lacs)

Blazars display optically thin radiation between 86 and 229 GHz in general

Millimeter spectral index

• Flat to optically thin between 3.5mm and 2cm ($\tilde{\alpha}^{Q}_{15,86}$ =-0.22 for quasars and $\tilde{\alpha}^{B}_{15,86}$ =-0.12 for BL Lacs)

• Only a small fraction (19% of quasars and 15% of BL Lacs) show $\alpha_{15, 86}$ > 0

• More optically thin from 3.5 and 1.3mm ($\tilde{\alpha}^{Q}_{86,229}\text{=-}0.75$ for quasars and $\tilde{\alpha}^{B}_{86,229}\text{=-}0.56$ for BL Lacs)

Blazars display optically thin radiation between 86 and 229 GHz in general

- Not affected by opacity effects angle rotation ^z & depolarization ⇒ intrinsic polarization properties of sources
- Few exceptions happen for flaring sources with opticaly thick spectral indexes

Linear polarization degree

At 3.5mm:

- We detected linear polarization above 3σ levels of $m_L \sim 0.96\%$ for 88% of the sample
- BL Lacs, with median(m_l)= 4.6%, are more strongly polarized than quasars, with median(m_l)= 3.2%

Linear polarization degree

At 3.5mm:

- We detected linear polarization above 3σ levels of $m_L{\sim}0.96\%$ for 88% of the sample

• BL Lacs, with median(m_L)= 4.6%, are more strongly polarized than quasars, with median(m_L)= 3.2%

At 1.3mm:

• We detected linear polarization above 3σ levels of $m_L \sim 6.0\%$ for 13% of the sample (23 sources)

• BL Lacs, with median(m_L)= 12.0%, are more strongly polarized than quasars, with median(m_L)= 7.7%

Increase of linear polarization degree with v_{obs}

• Significantly larger fractional linear polarization at 3mm than at 2cm by median factors ~1.6

• 18% of sources with $m_{L, 86}/m_{L, 15} > 4$

Agudo et al. (2014)

Increase of linear polarization degree with v_{obs}

• Significantly larger fractional linear polarization at 3mm than at 2cm by median factors ~1.6

• 18% of sources with $m_{L, 86}/m_{L, 15} > 4$

 Same for comparison of 3.5mm and 1.3mm with median factors ~1.7

• 9% of sources with $m_{L, 229}/m_{L, 86} > 4$

Increase of linear polarization degree with v_{obs}

• Significantly larger fractional linear polarization at 3mm than at 2cm by median factors ~1.6

• 18% of sources with $m_{L, 86}/m_{L, 15} > 4$

 Same for comparison of 3.5mm and 1.3mm with median factors ~1.7

• 9% of sources with $m_{L, 229}/m_{L, 86} > 4$

The higher frequency emission in blazars comes from regions with progressively better B order

• At 3.5mm, weak trend to align χ almost parallel to the jet axis (for ~17% of sources)

• Similar results found in Agudo et al. (2010) for survey in 2005, and Lister & Homan (2005)

• At 3.5mm, weak trend to align χ almost parallel to the jet axis (for ~17% of sources)

• Similar results found in Agudo et al. (2010) for survey in 2005, and Lister & Homan (2005)

Similar results for 1.3mm data

• At 3.5mm, weak trend to align χ almost parallel to the jet axis (for ~17% of sources)

• Similar results found in Agudo et al. (2010) for survey in 2005, and Lister & Homan (2005)

Similar results for 1.3mm data

 For purely axisymmetric jets, χ has to be observed either parallel or perpendicular to the jet axis owing to cancellation of orthogonal polarization components (e.g, Lyutikov et al. 2005; Cawthorne 2006)

• At 3.5mm, weak trend to align χ almost parallel to the jet axis (for ~17% of sources)

• Similar results found in Agudo et al. (2010) for survey in 2005, and Lister & Homan (2005)

Similar results for 1.3mm data

 For purely axisymmetric jets, χ has to be observed either parallel or perpendicular to the jet axis owing to cancellation of orthogonal polarization components (e.g, Lyutikov et al. 2005; Cawthorne 2006)

Blazar jets are not axisimmetric, at least on which regards to their polarization emission

Linear polarization angle to jet position angle misalignment

Levs = (-0.5, 0.5, 1, 2, 4, 8, 16, 32, 64, 90)% of peak Pol. line (1 mas) = 4.5 Jy/beam

Martí-Vidal et al. (2012)

NRAO 150, 3mm GMVA

Molina et al. (2014)

It is diffcult to find a long period of time when the polarization angle is stable

Faraday rotation

- General good match between χ_{86} and χ_{229} within the errors.
- Large χ_{229} uncertainties, do not allow > 3σ measurements of Faraday rotation
- RM upper limit $\approx 10^5$ rad/m² for our 22 sources

Consistent with previous claims of large RM (≈ 10⁴-10⁵ rad/m²) detected in some sources through ultra-high-resolution and high-precision polarimetric-VLBI observations (e.g., Attridge et al. 2005; Gómez et al. 2008, 2011; Hovatta et al. 2012; Plambeck et al. 2014).

 The record has just been established last week on PKS 1830-211 through ALMA measuremeths at 3.5, 1.3 & 0.8 mm, time variable RM=(2.53±0.08)x10⁷ rad/cm² (Marti-Vidal et al. 2015, Science)

• $m_C@3.5mm > 3\sigma$ (~0.9%) detected for 6% of the sample (13 sources) with maxima of up to ~2%!

• No m_c detected at 1.3mm (1 σ errors \approx 0.6%)

• $m_c@3.5mm > 3\sigma$ (~0.9%) detected for 6% of the sample (13 sources) with maxima of up to ~2%!

- No m_c detected at 1.3mm (1 σ errors \approx 0.6%)
- At cm $\lambda\lambda$, typically m_C< 0.5% (with maxima in the range 0.7-3%, (Aller et al. 2003; Homan & Wardle 2004, Homan & Lister 2006)
- Small fraction of sources detected at 2cm (15%), Homan & Lister (2006)

• $m_c@3.5mm > 3\sigma$ (~0.9%) detected for 6% of the sample (13 sources) with maxima of up to ~2%!

- No m_c detected at 1.3mm (1 σ errors \approx 0.6%)
- At cm $\lambda\lambda$, typically m_C< 0.5% (with maxima in the range 0.7-3%, (Aller et al. 2003; Homan & Wardle 2004, Homan & Lister 2006)
- Small fraction of sources detected at 2cm (15%), Homan & Lister (2006)
- Only one source (1124–186, $m_{C,86}$ =–1.98±0.35%) ^z was also detected in 2005 ($m_{C,86}$ =0.58±0.19%).

• We invoke m_c variability to explain strong change, sign reversal, and non detection of more sources on both 2005 and 2010 surveys, (consistent with Aller et al. 2003).

- Mars (unpolarized), shows Gaussian profile with $\sigma_{\sim}0.3\%$ (all time dependent measurements together) and <m_c>=0.0\%

• Blazars show:

- Broader m_C distributions, even double-peaked
- Sometimes significantly shifted from 0.0%
- Frequent detections > 3σ up to ~1% (even 2-3%)

• Measurements made with single-dish telescope \Rightarrow perhaps affected by beam depolarization

Circular polarization at mm- $\lambda\lambda$ are as large as those reported at cm- $\lambda\lambda$!

• Opens posibilities for extremelly high $m_c >> 1\%$ detections with millimeter interferometers

Circular polarization variability

Time evolution curves show hints of:

• Time scales of months

Perhaps also much shorter time scale (~weeks)

• Frequent sign changes

• Generation mechanisms (Jones & Odell 1977; Wardle & Homan 2003; Homan et al. 2009):

• Generation mechanisms (Jones & Odell 1977; Wardle & Homan 2003; Homan et al. 2009):

Intrinsic synchrotron CP from strong vector/ordered B field

• Generation mechanisms (Jones & Odell 1977; Wardle & Homan 2003; Homan et al. 2009):

Intrinsic synchrotron CP from strong vector/ordered B field

- v^{-1/2} spectrum (very weak at 100GHz)
- tangled B field suppresses the mechanism
- require large level of unidirectional field
- significant amounts of e⁺ also decrease m_C^{int}

• Generation mechanisms (Jones & Odell 1977; Wardle & Homan 2003; Homan et al. 2009):

- v^{-1/2} spectrum (very weak at 100GHz)
- tangled B field suppresses the mechanism
- require large level of unidirectional field
- significant amounts of e⁺ also decrease m_C^{int}

• Generation mechanisms (Jones & Odell 1977; Wardle & Homan 2003; Homan et al. 2009):

- v^{-1/2} spectrum (very weak at 100GHz)
- tangled B field suppresses the mechanism
- require large level of unidirectional field
- significant amounts of e⁺ also decrease m_C^{int}

Faraday conversion of LP into CP: birefringence effect producing the delay of one to the two linealy polarized waves, in the presence of a magnetic field with different orientation as the one that produced the original emission.

• Generation mechanisms (Jones & Odell 1977; Wardle & Homan 2003; Homan et al. 2009):

- v^{-1/2} spectrum (very weak at 100GHz)
- tangled B field suppresses the mechanism
- require large level of unidirectional field
- significant amounts of e⁺ also decrease m_C^{int}

Faraday conversion of LP into CP: birefringence effect producing the delay of one to the two linealy polarized waves, in the presence of a magnetic field with different orientation as the one that produced the original emission.

Conversion of LP into CP by internal Faraday rotation in the jet

• Generation mechanisms (Jones & Odell 1977; Wardle & Homan 2003; Homan et al. 2009):

- v^{-1/2} spectrum (very weak at 100GHz)
- tangled B field suppresses the mechanism
- require large level of unidirectional field
- significant amounts of e⁺ also decrease m_C^{int}

Faraday conversion of LP into CP: birefringence effect producing the delay of one to the two linealy polarized waves, in the presence of a magnetic field with different orientation as the one that produced the original emission.

Conversion of LP into CP by internal Faraday rotation in the jet

• even steeper spetrum $\sim v^{-5}$

requires cold e⁻ for the Faraday rotation

• Generation mechanisms (Jones & Odell 1977; Wardle & Homan 2003; Homan et al. 2009):

- v^{-1/2} spectrum (very weak at 100GHz)
- tangled B field suppresses the mechanism
- require large level of unidirectional field
- significant amounts of e⁺ also decrease m_C^{int}

Faraday conversion of LP into CP: birefringence effect producing the delay of one to the two linealy polarized waves, in the presence of a magnetic field with different orientation as the one that produced the original emission.

- even steeper spetrum $\sim v^{-5}$
- requires cold e⁻ for the Faraday rotation

• Generation mechanisms (Jones & Odell 1977; Wardle & Homan 2003; Homan et al. 2009):

- v^{-1/2} spectrum (very weak at 100GHz)
- tangled B field suppresses the mechanism
- require large level of unidirectional field
- significant amounts of e⁺ also decrease m_C^{int}

Faraday conversion of LP into CP: birefringence effect producing the delay of one to the two linealy polarized waves, in the presence of a magnetic field with different orientation as the one that produced the original emission.

Conversion of LP into CP by internal Fare lay relation in the jet

• even steeper spetrum $\sim v^{-5}$

requires cold e⁻ for the Faraday rotation

Conversion of LP into CP from helical B field

• Generation mechanisms (Jones & Odell 1977; Wardle & Homan 2003; Homan et al. 2009):

of

Conversion of LP into CP

from helical B field

internal Faraday relation in the jet

Conversion

Into

by

- v^{-1/2} spectrum (very weak at 100GHz)
- tangled B field suppresses the mechanism
- require large level of unidirectional field
- significant amounts of e⁺ also decrease m_C^{int}

Faraday conversion of LP into CP: birefringence effect producing the delay of one to the two linealy polarized waves, in the presence of a magnetic field with different orientation as the one that produced the original emission.

• even steeper spetrum $\sim v^{-5}$

- requires cold e⁻ for the Faraday rotation
- no internal Faraday rotation required
- may have a flat or even inverted spectrum
- but no change of sign of CP is expected

Conversion

• Generation mechanisms (Jones & Odell 1977; Wardle & Homan 2003; Homan et al. 2009):

of LP into

internal Faraday relation in the jet

Conversion of LP into CP

from helical B field

- v^{-1/2} spectrum (very weak at 100GHz)
- tangled B field suppresses the mechanism
- require large level of unidirectional field
- significant amounts of e⁺ also decrease m_C^{int}

Faraday conversion of LP into CP: birefringence effect producing the delay of one to the two linealy polarized waves, in the presence of a magnetic field with different orientation as the one that produced the original emission.

bv

• even steeper spetrum $\sim v^{-5}$

- requires cold e⁻ for the Faraday rotation
- no internal Faraday rotation required
- may have a flat or even inverted spectrum
- but no change of sign of CP is expected

Stocastic conversion of LP into CP in a purely tangled B field

Conversion

• Generation mechanisms (Jones & Odell 1977; Wardle & Homan 2003; Homan et al. 2009):

of

Conversion of LP into CP

from helical B field

internal Faraday relation in the jet

- v^{-1/2} spectrum (very weak at 100GHz)
- tangled B field suppresses the mechanism
- require large level of unidirectional field
- significant amounts of e⁺ also decrease m_C^{int}

Faraday conversion of LP into CP: birefringence effect producing the delay of one to the two linealy polarized waves, in the presence of a magnetic field with different orientation as the one that produced the original emission.

• even steeper spetrum $\sim v^{-5}$

• requires cold e⁻ for the Faraday rotation

- no internal Faraday rotation required
- may have a flat or even inverted spectrum
- but no change of sign of CP is expected

Stocastic conversion of LP into CP in a purely tangled B field

Into

bv

• CP varies in amount and sign with time

• Generation mechanisms (Jones & Odell 1977; Wardle & Homan 2003; Homan et al. 2009):

of I P into

internal Faraday relation in the jet

- v^{-1/2} spectrum (very weak at 100GHz)
- tangled B field suppresses the mechanism
- require large level of unidirectional field
- significant amounts of e⁺ also decrease m_C^{int}

Faraday conversion of LP into CP: birefringence effect producing the delay of one to the two linealy polarized waves, in the presence of a magnetic field with different orientation as the one that produced the original emission.

bv

• even steeper spetrum $\sim v^{-5}$

• requires cold e⁻ for the Faraday rotation

no internal Faraday rotation required

- may have a flat or even inverted spectrum
- but no change of sign of CP is expected

• CP varies in amount and sign with time

Iotal Flux and Polarimetric Blazar Behavior at Millimeter Wavelengths. Iván Agudo, IAA-CSIC, Krakow, 23-04-2015

Conversion of LP into CP from helical B field

Conversion

Stocastic conversion of LP into CP in a purely tangled B field

Summary

- Shorter millimeter emission region located at progressively inner jet regions
- Blazars display optically thin radiation at short mm- $\lambda\lambda$
- Shorter mm emission in blazars comes from regions with progressively better B order
- Blazar jets are not axisimmetric, on which regards to their polarization emission
- If quiescent states reflect underlying B field of the jet, such field is perpendicular to jet axis \Rightarrow shock (transverse or conical) or toroidal/helical field
- Time evolution curves show hints of fast CP variability and frequent sign changes
- Conversion of LP into CP from helical B field + inhomogeneous component(s)

Summary

- Shorter millimeter emission region located at progressively inner jet regions
- Blazars display optically thin radiation at short mm- $\lambda\lambda$
- Shorter mm emission in blazars comes from regions with progressively better B order
- Blazar jets are not axisimmetric, on which regards to their polarization emission
- If quiescent states reflect underlying B field of the jet, such field is perpendicular to jet axis \Rightarrow shock (transverse or conical) or toroidal/helical field
- Time evolution curves show hints of fast CP variability and frequent sign changes
- Conversion of LP into CP from helical B field + inhomogeneous component(s)

Detailed modeling of full polarization spectra may reveal key jet parameters (e.g. e^+ content, γ^{min} , γ^{max} , actual B configuration and intensity), which can hopefuly be estimated from the help of (sub-)mm data

Summary

- Shorter millimeter emission region located at progressively inner jet regions
- Blazars display optically thin radiation at short mm- $\lambda\lambda$
- Shorter mm emission in blazars comes from regions with progressively better B order
- Blazar jets are not axisimmetric, on which regards to their polarization emission
- If quiescent states reflect underlying B field of the jet, such field is perpendicular to jet axis \Rightarrow shock (transverse or conical) or toroidal/helical field
- Time evolution curves show hints of fast CP variability and frequent sign changes
- Conversion of LP into CP from helical B field + inhomogeneous component(s)

Detailed modeling of full polarization spectra may reveal key jet parameters (e.g. e^+ content, γ^{min} , γ^{max} , actual B configuration and intensity), which can hopefuly be estimated from the help of (sub-)mm data

