

Towards general-relativistic pulsar magnetospheres Jérôme Pétri

Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l'Université, 67000 Strasbourg, France

Abstract

Pulsars are believed to lose their rotational kinetic energy primarily by a large amplitude low frequency electromagnetic wave which is eventually converted into particle creation, acceleration and followed by a broad band radiation spectrum [1]. To date, there exist no detailed calculation of the exact spin-down luminosity with respect to the neutron star magnetic moment and spin frequency, including general-relativistic effects. Estimates are usually given according to the flat space-time magnetodipole formula [2]. I present accurate solutions of the general-relativistic electromagnetic field around a slowly rotating magnetized neutron star. The full set of time-dependent Maxwell equations are solved in a curved space-time following the 3+1 formalism [3]. The numerical code is based on a pseudo-spectral method [4] and adapted to an arbitrary background metric. Stationary solutions are readily obtained and compared to semi-analytical calculations [3]. Some new results about its extension to force-free solutions in general relativity are also presented.

1. The space-time metric

7. Vacuum solutions

 $\triangleright \alpha$ lapse function

 \triangleright β shift vector

 $\sim \gamma_{ab}$ spatial metric

2. Maxwell equations in 3+1 formalism

 $\nabla \cdot \mathbf{B} = \mathbf{0}$ $\nabla \times \mathbf{E} = -\frac{1}{\sqrt{\gamma}} \partial_t (\sqrt{\gamma} \mathbf{B})$ $\nabla \cdot \mathbf{D} = \rho$ $\nabla \times \mathbf{H} = \mathbf{J} + \frac{1}{\sqrt{\gamma}} \partial_t (\sqrt{\gamma} \mathbf{D})$

3. Two important constitutive relations

Figure : Vacuum magnetic field lines of the perpendicular rotator in the equatorial plane for $r_{\rm L}/R = 10$ (flat space-time in blue).

Figure : Normalized Poynting flux L/L_0 for the perpendicular rotator compared to the Deutsch solution [5].

$$L_0 = \frac{8 \pi}{3 \,\mu_0 \,c^3} \,\Omega^4 \,B_{\rm L}^2 \,r_{\rm L}^6 \qquad (3)$$

8. Force-free solutions

$$\varepsilon_{0} \boldsymbol{E} = \alpha \boldsymbol{D} + \varepsilon_{0} \boldsymbol{C} \boldsymbol{\beta} \times \boldsymbol{B}$$
$$\mu_{0} \boldsymbol{H} = \alpha \boldsymbol{B} - \frac{\boldsymbol{\beta} \times \boldsymbol{D}}{\varepsilon_{0} \boldsymbol{C}}$$

4. The force-free current

$$\mathbf{J} =
ho rac{\mathbf{E} imes \mathbf{B}}{\mathbf{B}^2} + rac{\mathbf{B} \cdot
abla imes \mathbf{H} - \mathbf{D} \cdot
abla imes \mathbf{E}}{\mathbf{B}^2} \mathbf{E}$$

5. Spin-down luminosity as a diagnostic

Poynting flux through a sphere of radius *r*

 $L = \int E \wedge H r^2 d\Omega$

6. Numerical algorithm

Figure : Force-free magnetic field lines of the perpendicular rotator in the equatorial plane for $r_{\rm L}/R = 10$ (flat space-time in blue).

Force-free solution ipole align 0. dipole align 0.5 dipole perp 0.5 split 0.5 monopole 0. monopole 0.5 0.2 0.1 0.3 0.4 a/R_{s}

Figure : Normalized Poynting flux L/L_0 for monopole/split monopole and dipole in general relativity.

9. Conclusion & Perspectives

Conclusions

- curved space-time increases the spin-down luminosity.
- seen in vacuum and in force-free simulations.

Pseudo-spectral discontinuous Galerkin method

- finite volume formulation in radius.
- high-order interpolation with Legendre polynomials. non uniform radial grid.
- spectral interpolation in longitude/latitude.
- vector spherical harmonic decomposition.
- 4th order Runge-Kutta time integration.
- Lax-Friedrich flux.
- stabilization by filtering and limiting.
- exact boundary conditions on the neutron star surface. outgoing waves at the outer boundary.

code able to handle discontinuities by construction.

Perspectives

- extension to resistive solutions.
- consequences on pulsar light-curves in radio up to high-energy.
- modification of phase-resolved polarization properties (curvature and synchrotron radiation).

Bibliography

[1] J. G. Kirk, Y. Lyubarsky, and J. Petri. The Theory of Pulsar Winds and Nebulae. 357:421-+, 2009.

- [2] A. J. Deutsch. The electromagnetic field of an idealized star in rigid rotation in vacuo. Annales d'Astrophysique, 18:1-+, January 1955.
- [3] J. Pétri. General-relativistic electromagnetic fields around a slowly rotating neutron star: stationary vacuum solutions. MNRAS, 433:986–1014, August 2013.
- [4] J. Pétri. The pulsar force-free magnetosphere linked to its striped wind: time-dependent pseudo-spectral simulations. MNRAS, 424:605–619, July 2012.
- [5] J. Pétri. General-relativistic electromagnetic fields around a slowly rotating neutron star: time-dependent pseudo-spectral simulations. MNRAS, 439:1071–1078, March 2014.