THE GAMMA-RAY LOUD NARROW-LINE SEYFERT 1 GALAXY PKS 2004-447

The X-ray and Radio View

ANNIKA KREIKENBOHM^{1,2}, R. SCHULZ^{1,2}, M. KADLER², J. WILMS¹, A. MARKOWITZ^{1,3,4}, C.S. CHANG⁵, B. CARPENTER^{6,7}, P. G. EDWARDS⁹, D. ELSÄSSER², N. GEHRELS⁶, C. GROSSBERGER^{1,7}, K. MANNHEIM², C. MÜLLER^{2,1}, R. OJHA^{6,8,10}, E. $ROS^{5,11,12}$, J. STEVENS⁹, AND J. TRÜSTEDT²

¹ Dr. Remeis Sternwarte & ECAP, Univ. Erlangen-Nürnberg, Bamberg, Germany, ² Univ. Würzburg, Würzburg, Germany, ³ Univ. of San Diego ⁴ Alexander von Humboldt Fellow ⁵ Max-Planck-Institut für Radioastronomie, Bonn, Germany ⁶ Astrophysics Science Division, NASA GSFC, Greenbelt, USA ⁷ Max-Planck-Institut für Extraterrestrische Physik, Garching, Germany ⁸ Catholic University of America, Washington, USA ⁹ CSIRO, Astronomy and Space Science, ATNF ¹0 University of Maryland, Baltimore, USA ¹¹ Observatori Astronòmic, Univ. València, Spain, ¹² Dept. Astronomia y Astrofisica, Univ. València, Spain,

Abstract

The discovery of an elusive sample of gamma-ray bright radio-loud narrow-line Seyfert 1 (γ -NLS1) galaxies revealed an intriguing new aspect of the AGN phenomenon. We study the radioloudest γ -NLS1 galaxy, PKS 2004–447, as part of the multiwavelength monitoring program TANAMI. We show the first 8.4 GHz VLBI image, revealing a high brightness-temperature core and a prominent single-sided radio jet on parsec scales. New Swift and XMM-Newton observations reveal an unobscured flat X-ray spectrum, dominated by a single power-law component. In comparison to other γ -NLS1s, PKS 2004–447 exhibits a unique flat X-ray spectrum and persistent steep radio spectrum with moderate amplitude and spectral variability in both bands. The total radio emission is coming from a region smaller than ~ 0.5 kpc, supporting a possible classification of PKS 2004–447 as a Compact Steep Spectrum (CSS) source.

Facts on γ -NLS1

TANAMI multiwavelength campaign of PKS 2004–447

Relativistically beamed radio jets are a common feature of radio-loud active galactic nuclei (AGN), in elliptical galaxies with a central accreting supermassive black hole $(> 10^8 M_{\odot})$ at low accretion rates. The detection of γ -ray activity in radio-loud narrow line Seyfert 1 galaxies suggest relativistically beamed jets in spiral galaxies with low black hole masses ($\leq 10^8 M_{\odot}$), but high accretion rate. However, so far only a small number of γ -NLS1 have been detected (e.g. Foschini 2015, A&A 575, A13).

PKS 2004-447

- redshift z = 0.24 (Drinkwater et al 1997, MNRAS 284, 85)
- black hole mass $M_{\rm BH} \sim 10^{6.7}$ (Oshlack et al. 2001, ApJ 558, 578) γ -ray flux $F_{\geq 100 {\rm MeV}} \sim 2 \times 10^{-8} {\rm ph} {\rm cm}^{-2} {\rm s}^{-1}$ (Abdo et al. 2009, A&A 707, L144).
- only γ -NLS1 in the Southern Hemisphere
- radio-loudest γ -NLS1

X-ray Properties

- Unobscured, flat power-law spectrum: Γ from ~ 1.6 to $\sim 1.7.$
- Spectral and flux variability

- X-ray observations by *Swift* (from 2011 through 2014) and XMM-*Newton* (in 2004 and two in 2012)
- Radio flux density observations between 1.7 GHz and 45.0 GHz with Australian Telescope Compact Array (ATCA)
- VLBI monitoring with the Long Baseline Array and associated telescopes in the Australia, New-Zealand, Chile, South-Africa and Antarctica (Figure 1)

Figure 1: The TANAMI array; Credit: M. Kadler, J. Wilms; see talk by M. Kadler on Wednesday

Comparison with γ -ray selected MOJAVE sample

Figure 3: 15 GHz VLBI luminosity $L_{\mathrm{R},15}$ as a function of redshift zfor the γ -NLS1 sample in comparison to BL Lacs, Quasars and Galaxies of the γ -ray selected MOJAVE sample (γ MOJAVE, Lister et al. 2013, AJ 146, 120)

2004-04-11, $\chi^2/dof=359.6/398$ 2012-05-01, $\chi^2/dof=152.6/146$ $2012-10-18, \chi^2/dof=299.3/258$ Energy [keV]

Parsec-scale morphology

- First 8.4 GHz VLBI image of PKS 2004–447 (Figure 5 left):
 - brightness temperature of VLBI core $\sim 4 \times 10^{10}$ K
 - upper limit of the jet angle to the line of sight of 24°
- Archival 1.5 GHz VLBA+VLA image of PKS 2004–447 (Figure 5 right):
 - unresolved on arcsec scales (VLA only)
 - radio source is contained within a region of projected size $\sim 0.5 \,\mathrm{kpc}$
 - diffuse emission on scales $\gtrsim 50 \text{ mas}$

Figure 4: (0.3–10) keV X-ray luminosity L_X as a function of redshift z for the γ -NLS1 sample (black filled symbols) in comparison to X-ray snapshots of the MOJAVE-I sample (open symbols).

Conclusion and Outlook

- The flat, unobscured X-ray spectrum and linearly correlated X-ray flux variations can be explained by a single dominating, non-thermal emission component and is consistent with the interpretation of emission from the jet.
- PKS 2004–447 shows a complex single-sided jet on parsec-scales.
- \rightarrow Ongoing TANAMI observation will allow us to study time evolution of pc-scale jet.
- Consistent steep radio spectrum of PKS 2004-447 unique among small sample of γ -NLS1.

Figure 5: VLBI images of PKS 2004–447; Contour lines start at 3 times the image noise level $\sigma_{\rm rms}$ and increase logarithmically by a factor of 2; Left: TANAMI image at 8.4 GHz; Right: VLBA+VLA image at $1.5\,\mathrm{GHz}$

Figure 6: 15 GHz VLBI images of 1H 0323+342, SBS 0846+513, PMN J0948+0022 and PKS 1502+036 from the MOJAVE project; the contour lines start at $3\sigma_{\rm rms}$ and increase logarithmically by a factor of 2

- \rightarrow ATCA monitoring will continue as part of the TANAMI project.
- Intriguing resemblance of γ -NLS1s and BL Lac objects (see Fig. 4). • Further detection of γ -NLS1 are necessary to test small sample properties, such as \rightarrow significance of different radio spectra (from steep to flat to inverted), consistent ratio of γ -ray to radio luminosity contrary to the ratio of X-ray to radio luminosity.

Contact and Acknowledgement

For more information on the project please contact: akreikenbohm@astro.uni-wuerzburg.de or visit the TANAMI website

http://pulsar.sternwarte.uni-erlangen.de/tanami/

Acknowledgements: This research makes use of data obtained by XMM-Newton, an ESA science mission funded by ESA Member States and the USA (NASA), and textitSwift, a NASA mission with international participation. We acknowledge support by the Deutsches Zentrum für Luft- und Raumfahrt under contract number 50 OR 1103, the Spanish MINECO projects AYA2009-13036-C02-02 and AYA2012-38491-C02-01 and by the Generalitat Valenciana project PROMETEO/2009/104, as well as by the MP0905 action 'Black Holes in a Violent Universe'