Jets in Clusters

 Sebastian Heinz, <u>Brian Morsony, Jake Miller, & Sam Friedman</u> (<u>UW-Madison</u>), Marcus Brüggen (JU Bremen), Mateusz Ruszkowski (U-Michigan), Andrea Merloni (MPE Garching)

Outline

- Clusters as probes of jet physics
- Jets in dynamic clusters
 - Multiple bubbles vs. intermittency
 - Isotropy and AGN "spheres of influence"
 - Kinematic signatures of jet activity
- The fate of "fossil" radio plasma

The (no-)cooling problem

The (no-)cooling problem

- Gas stops cooling at 1/3 Virial temperature ~ 1.5 keV
- \Rightarrow Something must counter-act the cooling

Burns (90):

• All cool cores have radio loud AGN in their center

Chandra's cluster legacy

- Cavities
- Sound waves
- Shocks

Perseus (Fabian et al. 2008)

Chandra's cluster legacy

Cavities

- Sound waves
- Shocks

Perseus (Fabian et al. 2008)

Radio source evolution

Supersonic

Transonic

Buoyant (detached)

Reynolds, Heinz, & Begelman 2002

Cavities

Shocks

M87, Forman et al. 2007

Sound waves

Perseus (Fabian et al. 2003)

Perseus

B. Cellini (1554) 10

Energetics

Perseus A, Perseus cluster (Fabian et al. 2000)

Energetics

 $E \approx 4pV$

 $v_{\rm exp} \approx v_{\rm bouy}$

 $t_{\rm age} \approx R/v_{\rm buoy}$

 $\langle W_{\rm jet} \rangle \approx E/t_{\rm age}$

Bubble statistics

Jet power vs. cluster cooling rate

Global efficiency

Jet power vs. core flux

Global efficiency

Global efficiency

Kinetic luminosity function

• Low L sources • $\langle \rho_{\rm P_{jet}} \rangle \sim 10^{40} \frac{\rm ergs}{\rm s\,cm^3}$ • $\langle \eta \rangle \sim 0.2\% - 0.5\%$

Krakow 2011: Understanding Relativistic Jets

e.g., Merloni & Heinz 2009,2011

Bubble statistics

Jet power vs. Bondi accretion rate: few% conversion?

"Radio mode" feedback?

"Radio mode" feedback?

"Radio mode" feedback?

Spin?

McNamara et al. 2011

Cluster heating

Shocks are out:

• Fraction of time spent above Mach M

 $f_{\rm t}(>M) \sim \frac{M^{-2.5}}{3}$

• Mass fraction going through Mach > M shock:

$$f_{\rm m}(>M) \sim \frac{M^{-9.5}}{3}$$

Merloni & Heinz 2011

"Central" question:

How can a collimated bipolar jet heat a spherical cluster?

"Central" question:

How can a collimated bipolar jet heat a spherical cluster?

Non-spherical clusters

How much do Initial conditions in jet simulations matter?

Clusters are <u>anisotropic</u> & dynamic

⇒ Start with a cosmologically evolved cluster

Model setup

Heinz et al. 2006, Morsony et al. 2010

Model setup

Heinz et al. 2006, Morsony et al. 2010

Model setup

Heinz et al. 2006, Morsony et al. 2010

The VLA view of Cygnus A^d

The VLA view of Cygnus A^d

The VLA view of Cygnus A^d

Heinz, Brüggen, Young, & Levesque 2006

Jets vs. isotropy

Relative mass depletion in jet channel:

Heinz, Brüggen, Young, & Levesque 2006

Jets vs. isotropy

Rotation and dentist drill:

- Jet channel re-filled after 80 Myrs
- Subsequent jet episodes can couple with inner cluster

Multiple cavities \neq intermittency

- Dynamics in cluster core:
 - "Target" material mixed into jet path
 - New cavities
 generated after ~
 free fall time
 - Cannot use multiple cavities to infer duty cycle!

Multiple cavities \neq intermittency

 Dynamics in cluster core:

> "Target" material mixed into jet path

New cavities generated after ~ free fall time

Cannot use multiple cavities to infer duty cycle!

Elapsed Time: -2.787

-2.7875260 Myr

File #: 1300

Krakow 2011: Understanding Relativistic Jets

Multiple cavities \neq intermittency

Image Size: 178.312 kpc

- Dynamics in cluster core:
 - "Target" material mixed into jet path
 - New cavities generated after ~ free fall time
 - Cannot use multiple cavities to infer duty cycle!

Krakow 2011: Understanding Relativistic Jets

- Interaction with cluster weather
 - AGN impact limited to "sphere of influence"
 - Radius R ~ $P^{1/3}$
 - AGN excavates deeper, rather than further

- Interaction with cluster weather
 - AGN impact limited to "sphere of influence"
 - Radius R ~ $P^{1/3}$
 - AGN excavates deeper, rather than further

- Interaction with cluster weather
 - AGN impact limited to "sphere of influence"
 - Radius R ~ $P^{1/3}$
 - AGN excavates deeper, rather than further

- Interaction with cluster weather
 - AGN impact limited to "sphere of influence"
 - Radius R ~ $P^{1/3}$
 - AGN excavates deeper, rather than further

- Interaction with cluster weather
 - AGN impact limited to "sphere of influence"
 - Radius R ~ $P^{1/3}$
 - AGN excavates deeper, rather than further

Elapsed Time: 200.158 Myr

Image Size: 356.624 kpc

"Sphere of influence": Time after onset

Excavated zone reaches asymptotic terminal size

Morsony, Heinz, Brueggen, & Ruszkowski 2010

"Sphere of influence": Jet duration

"Sphere of influence": Jet power

Chandra legacy

- Imaging
 - Cavities
 - Sound waves
 - Shocks
- What are we missing?
 - Photons
 - Spectral resolution

Chandra legacy

- Imaging
 - Cavities
 - Sound waves
 - Shocks

What are we missing?
Photons
Spectral resolution

Interface: simulations/observations

A simulation is useless in vacuum, needs connection to observations

- 1. Take a 3D simulation of thermal gas
- 2. Simulate the spectrum emitted by the gas
- 3. "Observe" it with an X-ray telescope

Download: http://www.astro.wisc.edu/~heinzs/XIM

Interface: simulations/observations

A simulation is useless in vacuum, needs connection to observations

- 1. Take a 3D simulation of thermal gas
- 2. Simulate the spectrum emitted by the gas

3. "Observe" it with an X-ray telescope

Download: http://www.astro.wisc.edu/~heinzs/XIM

Interface: simulations/observations

A simulation is useless in vacuum, needs connection to observations

1. Take a 3D simulation of thermal gas

2. Simulate the spectrum emitted by the gas

3. "Observe" it with an telescope

Krakow 20

Download: http://www.astro.wisc.edu/~heinzs/XIM

The Athena view of Cygnus A

The Athena view of Cygnus A

Jet-induced turbulence

- Cluster background turbulence:
 - inner: v₁_σ ~ 200 km/s
 - outer: v₁_σ ~ 300 km/s
- Jets generate strong turbulence
- Detectable with ASTRO-H, Athena

Jet-induced turbulence

- Cluster background turbulence:
 - inner: v₁_σ ~ 200 km/s
 - outer: v₁σ ~ 300 km/s
- Jets generate strong turbulence
- Detectable with ASTRO-H, Athena

Summary

- Cluster cavity observations reveal as much about the properties of jets as they do about clusters
- Dynamical properties of clusters are important for radio source evolution
- Multiple cavities \neq intermittency
- Sphere of influence of Jet on cluster limited by dynamics, with R ~ P^{1/3}
- Weigh resolution X-ray spectroscopy has great potential for studying feedback