Rob Fender University of Southampton

Jets from X-ray binaries and their connection to accretion flows, black hole spin, mass and environment

When jets are formed I: Connection to spectra of accretion flow

- The integrated rms X-ray variability is correlated with the spectral hardness
- The jet is on in hard states and flares, then switches off, in transitions \rightarrow soft states

The amount of time spent in hard vs soft states above 1% Eddington is consistent with numbers of radio loud / radio quiet AGN at high Eddington ratios

What's new since Fender, Belloni & Gallo (2004)?

Empirical aspects of model have been confirmed with much larger samples (~20 c.f. ~4). No strong contradictions.

Theoretical interpretation remains more or less untested.

Much more information available about coupling to <u>variability</u> properties of accretion flow

Fender, Homan & Belloni (2009) These patterns of behaviour probably also appear in AGN

(Koerding, Jester & Fender 2006)

Chatterjee et al. (2009, 2011) [also Marscher et al. (2002)]

When jets are formed II: Connection to variability and winds So how closely can we connect the X-ray variability to the jet?

On timescales ≥ 1 sec there is strong IR variability from the jet and it is correlated with Xrays with a lag of ~100 millisec. This corresponds to ~2000 R_G (for a jet moving at c) Linear polarisation of this component is low ($\leq 2\%$) so magnetic field is not highly organised at this distance.

Casella et al. (2010), Russell & Fender (2009)

What drives the X-ray variability on these timescales ?

• We can probe this with the energy spectrum of phase lags as a function of Fourier frequency

Negative phase lags w.r.t. power law indicate the disc drives the variability on the same timescales ≥ 1 sec

Uttley et al. (2010)

The hard state flat spectrum from internal shocks (tackles the Blandford & Konigl reheating 'issue')

Jamil, Fender & Kaiser (2009) Based on Spada et al. (2001) Jet power: 1e29 W Jet opening angle: 5.0 degrees Source distance: 2 kpc Source Inclination: 70 degrees Shell injection interval: 1.0 s Shell bulk Lorentz factor range: 1.5 - 2.0

Many 1000s of shells

Miller et al. (2006)

What is the global picture ?

(Ponti, Fender et al. in prep)

10

1000

Rodius $(R_a = GM/c^2)$

10000

Presence of highly-ionised X-ray winds in BH XRBs. Green indicates a non-detection, Red indicates a detection

The strong winds are only observed when two conditions are met: (ii) soft X-ray state (ii) viewed close to edge-on This suggests that the radio-quietness of BAL QSOs is because they are in soft states. Dusty "Torus"

Note Neilsen & Lee (2009) suggest that the wind physically shuts off the jet

Radio loudness and radiative efficiency Is there really a radio loud:radio quiet dichotomy, and is it drive by spin?

The interpretation presented is that **spin affects the radio loudness** – higher spin = more powerful jets, but **at high Eddington ratios there are also state changes** (like XRBs)

The X-ray : radio correlation for BHXRBs – we thought it was like this (e.g. Gallo, Fender & Pooley 2003)

But in fact it is like this (minus Cygnus X-1): **Two tracks ?** (Calvelo et al. 2010)

An aside: Radiatively <u>efficient</u> jet producing hard states

Black hole spin

BHXRB data plotted as Sikora, Stawarz & Lasota (2007)

No evidence for spin-powering of jets in black hole X-ray binaries (Fender, Gallo & Russell 2010)

1. Take all reported spin measurements, sorted into those reached via *disc* and *reflection (iron line)* fitting

2. Use hard state radio emission as a proxy for <u>ordering</u> of jet power (absolute normalisation not important). Also look at transient jet power and speed. Repeated with near-infrared (base of jet).

3. Compare. There is no correlation.

4. Conclude that one or more of the following is true:

(i) the calculated jet power and speed measurements are wrong, (ii) the reported spin measurements are wrong, (iii) there is no strong dependence of the jet properties on black hole spin

(see also Migliari, Miller-Jones & Russell 2011 for neutron stars)

Using only data from McClintock, Narayan et al. (2011)

Important case: Cygnus X-1

Well-studied jet, multiple power estimates

Radio normalisation **in the middle** of the distribution

Reported spin measurements:

Disc $a^* > 0.96$ Reflection $a^* = 0.05 \pm 0.01$

RA (J2000)

But what about AGN . . . ? Revisiting and extending Sikora, Stawarz & Lasota (2007)

This is for **total** radio power whereas fundamental plane uses **core** radio power. What happpens to this sample if we use **core** ?

Gap closes. Now we're using cores we can apply the fundamental plane mass correction (at same Edd ratio, radio loudness ~M^{0.4}) [Merloni, Heinz & Di Matteo 2003]

Gap closes further.. Mean separation between the 'two tracks' is now ~1.6 dex which corresponds to ~1 dex in jet kinetic power.

Recall that strong powering of jets which can predicts up to 10⁴ difference in jet power between a*=0 and a*=1

Beaming ? Total vs core radio power

Broderick & Fender (2011)

'Bolometric fundamental plane' with SSL07 AGN sample and latest BH XRB sample

Based on Merloni, Heinz & Di Matteo (2003)

Broderick & Fender (2011)

On the mass term . . .

Broderick & Fender (2011)

Beware of cheap imitations (or, who needs an event horizon?)

Neutron stars and White Dwarfs do it too

Radio flaring and hysteresis observed from Cataclysmic Variable

SS Cyg

(Koerding et al. Science, 2008)

Circinus X-1: neutron star

Sub-arcsecond moving jets with shocks

Miller-Jones et al. (2011)

Calvelo et al. (2011)

Conclusions

Jets in black hole binaries provide a rich phenomenology which is directly relevant to supermassive black holes in AGN

New data strongly suggest a rapidly variable jet in the hard state driven by variability in the accretion disc on timescales \geq 1 sec, and the presence of a flattened accretion disc wind in all soft states

There are radiatively <u>efficient</u> jet-producing hard states

There is no correlation between radio luminosity and reported spin measurements (or any subset of) in black hole binaries

The radio loud:radio quiet 'dichotomy' in AGN is strongly reduced if you use mass-corrected core luminosities rather than extended emission (this does not 'solve' anything, just shows it is complex)

Neutron star binaries still have a lot to teach us