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Relativistic shocks

Basic properties of relativistic shocks

Equation of state softens as particles become relativistic

Relativistic electrons + nonrelativistic ions: increased

compression

All components relativistic: compression → 3

But if Poynting flux significant: less compression
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Relativistic shocks

Sub- and superluminal shocks
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MHD+

MHD + test particles

Assumptions:

Particles scattered by magnetic fluctuations embedded in
local fluid

No energization away from shock front vA ≪ vshock

Spatial diffusion if particle speed ≫ vshock

Otherwise scattering in pitch-angle, or just random

deflections

No interaction with the shock front (OK for energetic

particles)
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MHD+

MHD + test particles

Assumptions:

Particles scattered by magnetic fluctuations embedded in
local fluid

No energization away from shock front vA ≪ vshock

Spatial diffusion if particle speed ≫ vshock

Otherwise scattering in pitch-angle, or just random

deflections

No interaction with the shock front (OK for energetic

particles)

Kinematic gain in energy measured in local fluid frame at each

shock crossing

Finite escape probability downstream
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MHD+

MHD+ test particles

If particles tied to field lines, then

only subluminal shocks can accelerate by the 1st order

Fermi process

oblique shocks → provide particles with a higher effective

compression

Small length-scale magnetic fluctuations

needed at superluminal shocks
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MHD+

Eigenfunction expansion

⇒ angular dependence:

exp
(

− 1+µs

1−µsu/c

)

(1 − µsu/c)
s

As Γ → ∞, s → 4.23

Universal index?

Relativistic gas

Relativistic gas

Strong shock

Strong shock
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MHD+

Effect of finite σ
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MHD+

Monte-Carlo

Comparison of MC/analytic

angular distributions

Achterberg et al

MNRAS 328, 393 (2001)
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Comparison with PIC simulations

2D PIC simulations, pair plasma

Spitkovsky (2008)

Martins et al (2009)

Unmagnetized e+e−

plasma

Bulk Γ ≈ 30

Field generated by

Weibel instability

Ab initio demonstration

of 1st order Fermi

process at a shock

front?

1% of particles in power-law

tail

Cut off at ∼ 100× peak,

growing in time

d lnN/d ln γ = −2.4 ± 0.1
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Comparison with PIC simulations

Oblique shocks

Sironi & Spitkovsky (2009)

Magnetized e+e−

plasma

Shock generated by

magnetic reflection

Qualitative agreement

with test-particle picture
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Comparison with PIC simulations

Summary MHD+ picture

Encouraging qualitative agreement with PIC simulations

Much additional work on, for example, radiative

signatures. . .

Spectra softer than E−2 → MHD++ maybe not so

interesting for relativistic shocks
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Comparison with PIC simulations

Summary MHD+ picture

Encouraging qualitative agreement with PIC simulations

Much additional work on, for example, radiative

signatures. . .

Spectra softer than E−2 → MHD++ maybe not so

interesting for relativistic shocks

BUT

Strong suspicion that at relativistic shocks magnetic field is

either generated (in GRB’s) or annihilated (in pulsar wind

termination shocks)
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Options

MHD equations valid if collisions dominate
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stress-energy tensor (e.g., cold plasma)
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Options

Options

MHD equations valid if collisions dominate

Collisionless MHD requires assumptions about the particle

stress-energy tensor (e.g., cold plasma)

Turbulent resistivity? Hall MHD? Gyro-kinetic?

Also based on expansions in the small parameters:

Larmor radius/wavelength

wave frequency/gyro frequency

wave frequency/plasma frequency
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Options

What is missing for relativistic shocks?

As sheets pass through an

MHD shock, B reverses
The pulsar striped wind

0 0 2� 4�r=rL � 2�N
Bj
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Options

What is missing for relativistic shocks?

As sheets pass through an

MHD shock, B reverses

Generates electromagnetic

wave if ω > ωp

For strong waves:

ω > ωp/
√
a

(a = eB/mcω ≫ 1)

Relativistic winds:

ωreflected = γ2Ωpulsar

The pulsar striped wind

0 0 2� 4�r=rL � 2�N
Bj

Electromagnetic modes important for relativistic,

Poynting-flux dominated flows
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Electron-positron fluids

Two-fluid model
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EM modes captured in a model with two, charged fluids,

e.g., e±
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Electron-positron fluids

Two-fluid model

EM modes captured in a model with two, charged fluids,

e.g., e±

Numerical implementation possible (Koide et al 2010) but

collision terms introduce subtleties

Strong waves in cold fluids tractable analytically (1970’s:

Dawson, Clemmow, Max, Perkins, Kennel, Pellat,

Asseo. . . )
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Electron-positron fluids

Dispersion relations

Linear dispersion relation

cold e± plasma

perpendicular

propagation
linear polarisation,

X-mode
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Electron-positron fluids

Dispersion relations

Linear dispersion relation

cold e± plasma

perpendicular

propagation
linear polarisation,

X-mode

Strong waves: resonance

freq ∝ 1/a
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Electron-positron fluids

Dispersion relations

Linear dispersion relation

cold e± plasma

perpendicular

propagation
linear polarisation,

X-mode

Strong waves: resonance

freq ∝ 1/a
cut-off freq ∝ 1/

√
a

Wave properties depend

on amplitude
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Jump conditions

Dispersion relations

Fixed energy flux per

particle (µ parameter)

Fixed momentum flux per

particle (≡ fixed σ in MHD)
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Dispersion relations
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Jump conditions

Dispersion relations

Fixed energy flux per

particle (µ parameter)

Fixed momentum flux per

particle (≡ fixed σ in MHD)

Dispersion relation

→ jump conditions

Strong waves in

equipartition:

thermalization

→ particle acceleration
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Jump conditions

Dispersion relations

Radial flow (short

wavelength approx)

Since ωp(R), fix ω, vary R
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Jump conditions

Dispersion relations

Radial flow (short

wavelength approx)

Since ωp(R), fix ω, vary R

Adiabatic expansion of

wave-packet
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Jump conditions
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Jump conditions

Dispersion relations

Radial flow (short

wavelength approx)

Since ωp(R), fix ω, vary R

Adiabatic expansion of

wave-packet

Free-expansion mode

(vR → c)

Confined mode (vR → 0)
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Jump conditions

Dispersion relations

Radial flow (short

wavelength approx)

Since ωp(R), fix ω, vary R

Adiabatic expansion of

wave-packet

Free-expansion mode

(vR → c)

Confined mode (vR → 0)

Instabilities. . .
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Summary

Subluminal MHD shocks can accelerate particles by 1st

order Fermi (kinematic effect)
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Jump conditions

Summary

Subluminal MHD shocks can accelerate particles by 1st

order Fermi (kinematic effect)

Superluminal MHD shocks might also

But not (significantly) if σ > 1.

Inclusion of EM modes (absent in MHD) suggests different

kind of “shock”.

After dissipation, return to low σ downstream flow

An alternative to “driven reconnection” Pétri & Lyubarsky

(2007)

Return of 1st order Fermi for high energy particles?
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