

Particle Acceleration in Reconnection

- 1. Observations of Solar and Earth's reconnections
- 2. Stochastic reconnection acceleration in many islands
- 3. Reconnection during MRI in Accretion Disks
- 4. Relativistic Reconnection

Masahiro Hoshino University of Tokyo

Acknowledgments to C. Jaroschek and S. Zenitani

Nonthermal Universe

Can magnetic reconnection produce non-thermal particles?

Energetic ions and electrons in solar flares

(GOES class X4.8)

[Emslie et al., 2004]

electrons up to tens of MeV, ions up to tens of GeV [Lin et al., 2003]

Reconnection in Earth's magnetotail

Energetic ions in Earth's magnetotail

I: Before the onset of reconnection \rightarrow II: After

	I: Before	II: After
γ	5.9±0.8	4.9±0.2
$P_{\text{nonthermal}}(>100 \text{keV}) \text{ [nPa]}$	$(3.4 \pm 3.2) \times 10^{-3}$	$(9.2 \pm 2.2) \times 10^{-2}$

Acceleration in MRX simulation

Several Acceleration Mechanisms:

- Linear X-line acceleration (Pritchett, 2005)
- Mulit-step processes including (1) electron "surfing" in the bounday, (2) Speiser/ meandering around X-line, and (3) Betatron acceleration in B pile-up region (MH 2005)

MH 2005

Several Acceleration Mechanisms:

- Fermi acceleration during magnetic island contraction (Drake et al 2005, 2006)
- Acceleration during magnetic island coalescence with surfing process (Oka et al 2010)

Original Fermi Acceleration

Stochastic Acceleration by Reconnection

Probability of Interaction

If energetic particles were uniformly distributed,

$$\frac{\Delta \varepsilon}{\varepsilon} \approx 2 \frac{V_A}{c} P_{out} - 2\alpha \frac{V_A}{c} P_{in} = 0$$

Assumption of "uniformly distributed" is correct ???

2D PIC Simulation

Particle Trajectories, Magnetic Field Lines

Particle Energies

Injection of Energetic Particles

Early Stage (plasma sheet Reconnection)

Reconnection jet into plasma sheet

energetic particles

energetic particles are included

Late Stage (plasmoid Reconnection)

Reconnection jet toward high B region

Acceleration in Turbulent MRX

3D simulation result is basically same as 2D

3D Reconnection

 $t\Omega_{e} = 640.0$

 $t\Omega_{e} = 1600.$

Blue Region: Thermal Plasma Red Region : High Energy Particle

Green : Magnetic Field Lines

Reconnection in Accretion Disk

Courtesy of Kato

Reconnection in Magneto-Rotational Instability (MRI)

weak magnetic field ($\beta >>1$) $\rightarrow \beta = 1-10$ dynamo process

Balbus and Hawley, 1998; Velikov 1959

MRI and Reconnection in PIC simulation

 β =100, Kepler rotation Ω 256^3 grids 20 particles/cell, periodic shearing box, electron-positron plasma

green: magnetic field lines color contour: angular velocity

Reconnection in a large scale 2D MRI

Turbulent reconnection in MRI

Pulsar Wind & Nebula

High Mach Number Shocks

Kato, 2010

Summary (Part 1)

- Observations in Solar corona & Earth's Magnetosphere: Particle acceleration and energy release processes are intimately linked.
- Stochastic reconnection acceleration:
 Possibility of 1st order Fermi acceleration in turbulent magnetic reconnection with many islands.
- Reconnection during MRI in Accretion Disks: Nonthermal particle acceleration during magneto-rotational instability.

Progress of Relativistic Reconnection

Relativistic Reconnection (Particle-in-Cell simulation)

Non-thermal particle acceleration

Zenitani & MH, ApJ (2001)

Large Scale Relativistic Reconnection

Jaroschek et al. ApJ 2004

Drift Kink Instability (Current Driven Instability)

Pritchett et al 1996; Daughton 1998

Drift-Kink Mode (early stage)

Initial condition: relativistic Harris solution

Drift-Kink Mode (nonlinear stage)

 $E \cdot J > 0$ strong magnetic energy dissipation

Energy Dissipation Rate

3D Current Sheet Evolution

Isosurface of N, Color contour of N at neutral sheet

Drift-Kink grows faster than Reconnection

Nonlinear Stage of 3D Current Sheet

Drift-Kind Mode dominates, No Reconnection.

Turbulent Sheet Transition to turbulence is fast in 3D than in 2D plasma mixing

Relativistic Current Sheet Instabilities

$$V_A/c \sim O(1)$$
, T/mc² ~ O(1),
Electron and Positron Plasmas

3D Reconnection with Guide Field (By)

3D Reconnection with Guide Field

Zenitani & MH, PRL 2005

Radiation-Dominated Relativistic Reconnection

• synchrotron cooling in strong B

$$\frac{\tau_{loss}}{\tau_{dyn}} \approx \left(\frac{10^2}{\tau_{dyn}\Omega_c}\right) \left(\frac{10^{12}G}{B}\right) \left(\frac{10}{E/mc^2}\right)^2$$

magnetar

pulsar

Duncan & Thompson

Spitkovsky (2006)

Radiation Loss Effect in PIC Simulation Code

Abraham-Lorentz Formula for Radiation Drag Force

$$mc \frac{du^i}{ds} = \frac{e}{c} F^{ik} u_k + g^i$$
 (Dirac Form)

$$g^{i} = \frac{2e^{2}}{3c} \left(\frac{d^{2} u^{i}}{ds^{2}} + u^{i} \frac{d u^{k}}{ds} \frac{d u_{k}}{ds} \right)$$

$$= \frac{2e^{3}}{3mc^{3}} \frac{\partial F^{ik}}{\partial x^{l}} u_{k} u^{l} - \frac{2e^{4}}{3m^{2}c^{5}} F^{ik} F_{lk} u^{l} + u^{i} \cdot \frac{2e^{4}}{3m^{2}c^{5}} (F^{kl} u_{l}) (F_{km} u^{m})$$

$$e^{R} e^{2}$$

 $\alpha \equiv \omega_c \tau_0 = \frac{eB}{mc} \frac{e}{mc^3} \ll 1 \quad \tau_0 \quad \text{Light crossing time over classical electron radius}$ (cf. Noguchi & Liang 2006; Koga et al. 2007)

Time Evolution of MR & DKI

Comparison of Growth Rate

Temperature Anisotropy (Early Stage)

Relativistic Current Sheet Instabilities

Radiation Cooling $V_A/c \sim O(1)$, T/mc² ~ O(1), Electron and Positron Plasmas

Summary (Part 2)

- Relativistic Reconnection vs Drfit-Kink Instability: Reconnection (MRX) -> non-thermal particle Drift-Kink (DK) -> thermal plasma
- Guide Magnetic Field: growth rate of MRX > DK with guide field growth rate of MRX < DK without guide field
- 3. Radiation-Dominated Reconnection: super-fast dissipation, growth rate of MRX > DK, transition to Sweet-Parker type reconnection