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Fig. 6. Location of the potential spout inner edgerpot for viscos-
ity α = 0.01 anda∗ = 0. Solid lines show the exact location of
rpot given by equation (1). The approximation (2) is shown by
dashed lines, and the location of ISCO by dotted lines.
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Fig. 7. Location of the sonic point as a function of the accretion
rate for different values ofα, for a non-rotating black hole,a∗ =
0. The solid curves are for saddle type solutions while the dotted
curves present nodal type regimes.

qualitative change occurs, resembling a “phase transition” from
the Shakura-Sunyaev behavior, to a very different slim-disk be-
havior.

For higher accretion rates the location of the sonic point sig-
nificantly departs from ISCO. For low values ofα the sonic point
moves closer to the horizon down to∼ 4M for α = 0.001.
For α > 0.2 the sonic point moves outward with increasing
accretion rate reaching values as high as 8M for α = 0.5 and
100ṀEdd. This effect was first noticed for small accretion rates
by Muchotrzeb-Czerny (1986) and later investigated in a wide
range of accretion rates by Abramowicz et al. (1988), who ex-

plained it in terms of the disk-Bondi dichotomy. The depen-
dence of the sonic point location on the accretion rate in the
near-Eddington regime is more complicated and is related tothe
fact that in this range of accretion rates the transition from the
radiatively efficient disk to the slim disk occurs near the sonic
radius.

The topology of the sonic point is important, because phys-
ically acceptable solutions must be of the saddle or nodal type;
the spiral type is forbidden. The topology may be classified by
the eigenvaluesλ1, λ2, λ3 of the Jacobi matrix,
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Because det(J) = 0, only two eigenvaluesλ1, λ2 are non-zero,
and the quadratic characteristic equation that determinesthem
takes the form,

2λ2 − 2λ tr(J) −
[

tr(J2) − tr2(J)
]

= 0. (6)

The nodal type is given byλ1λ2 > 0 and the saddle type by
λ1λ2 < 0, as marked in Figure 7 with the dotted and the solid
lines, respectively. For the lowest values ofα only the saddle
type solutions exist. For moderate values ofα (0.1 ≤ α ≤ 0.4)
the topological type of the sonic point changes at least oncewith
increasing accretion rate. For the highestα solutions have only
nodal type critical points.

The extra regularity conditions at the sonic point
Ni(r, η,L) = 0 are satisfied only for one particular value
of the angular momentum at the horizon which is theeigenvalue
of the problem.Lin is not known a priori, and should be found.
Figure 8 shows how doesLin depend on the accretion rate and
theα viscosity parameter.
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Fig. 8. Angular momentum at the horizon dependence on accre-
tion rate for solutions with different values ofα for a∗ = 0.

5. The variability edge

Axially symmetric and stationary states of slim accretion disks
represent, obviously, only a certain theoretical idealization. Real
disks are non-axial and non-steady. In particular, one expects
transient coherent features at accretion disk surfaces — clumps,


