What is the origin of the GeV γ -ray emission in Cygnus X-3?

Benoît Cerutti[†]

Institution: Center for Integrated Plasma Studies, University of Colorado, Boulder, USA.

In collaboration with : G. Dubus, J. Malzac, A. Szostek, R. Belmont, A. A. Zdziarski and G. Henri.

Introduction: The microquasar Cygnus X-3 emits high-energy radiation (>100 MeV) modulated with the 4.8h orbital period of the system. We model the

 γ -ray modulation and calculate the γ -ray optical depth in the system. These two analyses constrain the location of the γ -ray source in Cygnus X-3.

1. Gamma-ray Absorption

Diagram of Cygnus X-3

2. Gamma-ray Modulation

1.1 X-rays in Cygnus X-3

GeV γ-rays are absorbed by soft X-rays (~keV). In Cygnus X-3, γrays are observed when the X-ray spectrum is dominated by the thermal emission from the accretion disk (soft state) and a hard non-thermal tail extending beyond 10 keV possibly emitted by the accretion disk corona.

1.2 Absorption by the disk

2.1 Origin of the modulation

The γ-ray orbital modulation is naturally explained by the anisotropic inverse Compton scattering of the Wolf-Rayet star photons (~20 eV) onto ultrarelativistic electron-positron pairs corotating with the compact object.

2.2 Modeling of the modulation

We compute the γ -ray optical depth $\tau_{\nu\nu}$ above an optically thick, geometrically thin disk.

We compute the γ -ray lightcurve assuming that pairs are accelerated in a relativistic jet.

the compact object.

1.3 Gamma-ray emission from the corona?

Resulting constraints:

- Jet inclined, close to the line of sight
- Jet mildly relativistic
- Pairs injected ~10¹¹-10¹² cm from compact object

2.3 Effect of the precession of the jet

If the jet precesses,

the shape and the amplitude of the modulation should change significantly.

3. Conclusion: The gamma-ray emission should be emitted far (>10¹⁰ cm) from the compact object, possibly in an inclined and mildly relativistic jet.

* Email: benoit.cerutti@colorado.edu