Radiation spectra from relativistic electrons
moving in turbulent magnetic fields - m
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Abstract

We numerically calculate the radiation spectra from relativistic electrons moving in small scale turbulent fields expected in high energy
astrophysical sources. They are characterized by the strength parameter a=4,e|B|/mc% where A, is the length scale of the turbulent field. We
perform numerical calculations for several values of @ with ¥ =10. We obtain various types of spectra ranging between jitter radiation and
synchrotron radiation. For a ~ /, the spectrum turns out to take a novel shape which has not been noticed before. It is like a synchrotron
spectrum in the middle frequency region, but in the low frequency region it is a broken power law and in the high frequency region an extra
power law component appears beyond the synchrotron cutoff. We give a physical explanation of these features.
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