

On the Flux and Photon Index **Distributions of Fermi-LAT Blazars**

J. Singal, V. Petrosian, M. Ajello Stanford / KIPAC / SLAC

We present a determination of the distributions of gamma-ray flux and photon index for the 352 blazars detected at greater than 7 σ and above ±20° Galactic latitude by the Fermi-LAT in its first year catalog. Our method reconstructs the intrinsic distributions from the observed ones in a way that accounts robustly for the selection biases in the data and correlations among the variables. We find that for the population as a whole the intrinsic flux distribution can be represented by a broken power law of slopes -2.37±.13 and -1.70±.26, and the intrinsic photon index distribution can be represented by a Gaussian with mean 2.41 \pm .13 and 1 σ width of 0.25±.03. We also find the intrinsic distributions for the sub populations of BL Lac and FSRQ type blazars considered separately.

Fermi-LAT Blazars

Figure 1: Left: Flux and photon index for the 352 Fermi blazars used in this analysis. BL Lac type blazars (n=163) are shown as triangles, FSRQ type blazars (n=161) are shown as vertical crosses, and blazars of unidentied or ambiguous type (n=28) are represented by Xs. Right: Same, but with the cutoff function shown, along with the approximate limiting flux for each object determined by the detection significan.ce

We use blazars from the first year Fermi-LAT extragalactic catalog.² Fermi-LAT observations are biased against soft spectrum blazar sources at fluxes below $F_{100} = ~10^{-7}$ photons cm⁻² sec⁻¹. Because of this truncation in the data, and because of the possible inherent correlation between photon index (Γ) and flux (F100), accessing the true distributions of photon index and flux requires care.

Methods

ł

First we determine the correlation between α and F_{100} using the Spearman rank test (SRT) with the method of associated sets,^{3,4} which can deal with truncated data. We approximate the cutoff function with a curve in the Γ , F_{100} plane as discussed in [1]. We then can take out the correlation to form a correlation reduced photon index: Γ_{cr}

$$= \Gamma - \beta \cdot Log \left(\frac{F_{100}}{F_{100-\min}}\right) \quad (1)$$

where β is the best fit correlation parameter. Then the distributions are separable:

$$G(F_{100},\Gamma) = \psi(F_{100}) \times h(\Gamma)$$
 (2)

and the intrinsic photon index distribution can be recovered by

$$u(\Gamma) = \int_{F_{100}} \psi(F_{100}) \hat{h}\left(\Gamma - \beta \cdot Log\left(\frac{F_{100}}{F_{100-\min}}\right)\right) dF_{100} \quad (3)$$

References: ¹J. Singal, V. Petrosian, & M. Ajello, 2011, in prep

²A. Abdo et al. 2010, *ApJ*, 715, 429; ³B. Efron, & V. Petrosian, 1992, ApJ, 399, 345;

⁴V. Petrosian, 1992, in Statistical Challenges in Modern Astronomy, 173;

⁵Abdo, A., et al. 2010, *ApJ*, 720, 435 ("MA"), ⁶Abdo, A., et al. 2010, *PhysRevLet*, 104, 101101

Distributions

We form the distributions $\psi(F_{100})$ and $\hat{h}(\Gamma)$ using the Lynden-Bell method modified with associated sets^{3,4} to account for the truncation in the Γ , F_{100} plane. A full discussion is provided in [1].

The correlation between photon index Γ and flux F_{100} . See Equation 1 and §3.1

The slope of the intrinsic flux distribution $\psi(F_{100})$ at fluxes below the break. The mean of the Gaussian fit to the intrinsic photon index distribution $h(\Gamma)$. For the analysis here this includes the full range of results and their uncertainties when considering the 1 σ range of β .

g Including all FQRQs, BL Lacs, and 28 of unidentified type.

^b The slope of the intrinsic flux distribution $\psi(F_{100})$ at fluxes above the break. ^c The flux at which the power law break in $\psi(F_{100})$ occurs, in units of 10⁻⁸ photons cm⁻² sec⁻¹. In MA this is fit, while in this work it is a visual inspection, as precise location of the break is not important for this analysis photons $cm^{-2} sec^{-1}$. In MA this is a

The 1σ width of the Gaussian fit to the intrinsic photon index distribution $h(\Gamma)$