Observations of Pulsar Winds and Jets

Collaborators:
Bryan Gaensler
Steve Reynolds
David Helfand
Stephen Ng
Anne Lemiere
Okkie de Jager
Stephanie LaMassa
Jack Hughes
Outline

• Observed Structure of PWNe
• Properties of Pulsar Jets
• Broadband Emission from PWNe
• Evolution of PWNe in SNRs
PWNe and Their SNRs

- Pulsar Wind
 - sweeps up ejecta; shock decelerates flow, accelerates particles; PWN forms

- Supernova Remnant
 - sweeps up ISM; reverse shock heats ejecta; ultimately compresses PWN; particles accelerated at forward shock generate magnetic turbulence; other particles scatter off this and receive additional acceleration
• Poynting flux from outside pulsar light cylinder is concentrated in equatorial region due to wound-up B-field
 - termination shock radius decreases with increasing angle from equator (Lyubarsky 2002)

• For sufficiently high latitudes, particle flow is deflected back inward
 - collimation into jets may occur
 - asymmetric brightness profile from Doppler beaming

• Collimation is subject to kink instabilities
 - magnetic loops can be torn off near TS and expand into PWN (Begelman 1998)
 - many pulsar jets are kinked or unstable, supporting this picture

See talk by N. Bucciantini
Pulsar Jets – and Lots of Them

• Jets or jet-like structures are observed for ~20 young pulsar systems
 - the more we look the more we find, though evidence is weak for some
Pulsar Jets – and Lots of Them

- Jets or jet-like structures are observed for ~20 young pulsar systems
 - the more we look the more we find, though evidence is weak for some
 - many more show toroidal structures or extended tails (possibly also jets)

- Sizes vary from <0.1 pc (CTA 1) to >10 pc (PSR B1509-58)
 - no strong connection with dE/dt

- Jet luminosity ranges are huge:
 \[5 \times 10^{-7} \text{ to } 6 \times 10^{-3} \dot{E} \]
Pulsar Jets – and Lots of Them

- Jets or jet-like structures are observed for ~20 young pulsar systems
 - the more we look the more we find, though evidence is weak for some
 - many more show toroidal structures or extended tails (possibly also jets)

- Sizes vary from <0.1 pc (CTA 1) to >10 pc (PSR B1509–58)
 - no strong connection with dE/dt

- Jet luminosity ranges are huge:
 \[5 \times 10^{-7} \pm 6 \times 10^{-3} \dot{E} \]

- Typical photon index \(\Gamma \approx 1.6 - 2 \)
 - generally, uncooled synchrotron spectrum (Vela jets appears even harder)

- Where known, outflow velocities are subsonic: \(v_{\text{flow}} \approx 0.1 - 0.5c \)
Curved Jets and Instabilities

- Jet in PSR 1509-58 is **curved**, like in Crab
 - variations in structure seen on timescale of several months ($v \sim 0.5c$)

- Jet in Vela is wildly unstable, showing variations on timescales of weeks to months
 - changes in morphology suggest kink or sausage instabilities (Pavlov et al. 2003)
• Bright wind nebula powered by PSR J1846-0258 ($dE/dt = 10^{36.9}$ erg/s)
 - jet-like structure defines rotation axis

• Deep Chandra observation reveals inner/outer jet features, clump in north, and abrupt jet termination in south
 - jet spectrum is harder than surrounding regions, ➔ high-velocity (uncooled) flow
 - clumps along jet axis vary in brightness over time
Broadband Emission from PWNe

- Spin-down power is injected into the PWN at a time-dependent rate
 \[L(t) = L_0 \left[1 + \frac{(n-1)P_0^2L_0t}{4\pi^2I} \right]^{-\frac{n+1}{a-1}} \]

- Based on studies of the Crab Nebula, there appear to be two populations – relic radio-emitting electrons and electrons injected in wind (Atoyan & Aharonian 1996)
 \[Q(\varepsilon_e, t) = \begin{cases} Q_0(t)(\varepsilon_e/E_b)^{-\alpha_1}, & \text{if } \varepsilon_e < E_b \\ Q_0(t)(\varepsilon_e/E_b)^{-\alpha_2}, & \text{if } \varepsilon_e \geq E_b \end{cases} \]

- Get associated synchrotron and IC emission from electron population, and some assumed B field (e.g. Venter & de E Jager 2006)

See talk by O.C. de Jager
Broadband Emission from PWNe

• Spin–down power is injected into the PWN at a time-dependent rate

\[L(t) = L_0 \left[1 + \frac{(n-1)P_0^2L_0t}{4\pi^2I} \right]^{-(n+1)/(n-1)} \]

• Based on studies of Crab Nebula, there appear to be two populations – relic radio-emitting electrons and electrons injected in wind (Atoyan & Aharonian 1996)

\[Q(E_e, t) = \begin{cases}
Q_0(t)(E_e/E_b)^{-\alpha_1}, & \text{if } E_e < E_b \\
Q_0(t)(E_e/E_b)^{-\alpha_2}, & \text{if } E_e \geq E_b
\end{cases} \]

• Get associated synchrotron and IC emission from electron population, and some assumed B field (e.g. Venter & dE Jager 2006)

• More completely, assume wind injected at termination shock, with radial particle distribution and latitude-dependent magnetic component
 - Evolve nebula considering radiative and adiabatic losses to obtain time- and spatially-dependent electron spectrum and B field (e.g. Volpi et al. 2008)

See talk by O.C. de Jager
A Point About Injection: 3C 58

- 3C 58 is a bright, young PWN
 - morphology similar to radio/x-ray; suggests low magnetic field
 - low-frequency spectral break suggests possible injection break

- PWN and torus region observed in Spitzer/IRAC and CFHT observations
 - jet structure not seen above diffuse emission

Slane et al. 2004
A Point About Injection: 3C 58

- 3C 58 is a bright, young PWN
 - morphology similar to radio/x-ray; suggests low magnetic field
 - low-frequency spectral break suggests possible injection break
A Point About Injection: 3C 58

- **3C 58 is a bright, young PWN**
 - morphology similar to radio/x-ray; suggests low magnetic field
 - low-frequency spectral break suggests possible injection break

- **PWN and torus region observed in Spitzer and CFHT observations**

- **IR flux for nebula falls within extrapolation of x-ray spectrum**
 - indicates single break just below IR
A Point About Injection: 3C 58

- 3C 58 is a bright, young PWN
 - morphology similar to radio/x-ray; suggests low magnetic field
 - low-frequency spectral break suggests possible injection break

- PWN and torus region observed in Spitzer and CFHT observations

- IR flux for nebula falls within extrapolation of x-ray spectrum
 - indicates single break just below IR

- Torus spectrum requires change in slope between IR and x-ray bands
 - challenges assumptions of single power law for injection into nebula
A Point About Injection: 3C 58

PRELIMINARY

- 3C 58 is a bright, young PWN
 - morphology similar to radio/x-ray;
 suggests low magnetic field
 - low-frequency spectral break
 suggests possible injection break

- PWN and torus region observed in Spitzer and CFHT observations

- IR flux for nebula falls within extrapolation of x-ray spectrum
 - indicates single break just below IR

- Torus spectrum requires change in slope between IR and x-ray bands
 - challenges assumptions of single power law for injection into nebula
• Vela X is the PWN produced by the Vela pulsar
 - located primarily south of pulsar
 - apparently the result of relic PWN being disturbed by asymmetric passage of the SNR reverse shock

• Elongated “cocoon-like” hard X-ray structure extends southward of pulsar
 - clearly identified by HESS as an extended VHE structure
 - this is not the pulsar jet (which is known to be directed to NW); presumably the result of reverse shock interaction
Evolution in an SNR: Vela X

- XMM spectrum shows nonthermal and ejecta-rich thermal emission from cocoon
 - reverse-shock crushed PWN and mixed in ejecta?

- Radio, X-ray, and γ-ray measurements appear consistent with synchrotron and I-C emission from power law particle spectrum w/ two spectral breaks
 - density derived from thermal emission 10x lower than needed for pion-production to provide observed γ-ray flux
 - much larger X-ray coverage of Vela X is required to fully understand structure

LaMassa et al. 2008
• Thermal properties of ejecta in/around Vela X constrain the PWN/RS interaction
 - expect additional compression and heating as RS meets PWN

• IXO will easily determine plasma parameters (temperature, density, abundances, and ionization state) in short exposures (e.g. Lyβ/Lyα → kT, Heα[F]/[R] → n_e t)
 - line diagnostics will trace evolution of ejecta mixed into Vela X
 - similar studies will be enabled for other (much fainter) known systems of this type
• Radio and VHE spectrum for entire PWN suggests presence of two distinct electron populations
 - radio-emitting particles may be relic population, or a complicated injection spectrum...

• Maximum energy of radio-emitting electrons not well-constrained
 - this population will generate IC emission in GLAST band; spectral features will identify emissions from distinct up-scattered photon populations and constrain the underlying particle spectrum
Conclusions

• Recent X-ray observations show that jet/torus structures around pulsars are common
 - jet sizes and luminosities span a huge range; structure can be highly variable and unstable

• PWNe are reservoirs of energetic particles injected from pulsar
 - synchrotron and inverse-Compton emission places strong constraints on the underlying particle spectrum and magnetic field

• Modeling of broadband emission constrains evolution of particles and B field
 - modeling form of injection spectrum and full evolution of particles still in its infancy

• Reverse-shock interactions between SNR and PWNe distort nebula and may explain TeV sources offset from pulsars
 - multiwavelength observations needed to secure this scenario (e.g. Vela X)