Observations of Pulsar Winds and Jets

Collaborators:

Bryan Gaensler Steve Reynolds David Helfand Stephen Ng Anne Lemiere Okkie de Jager Stephanie LaMassa Jack Hughes

Patrick Slane (CfA)

Outline

- Observed Structure of PWNe
- Properties of Pulsar Jets
- Broadband Emission from PWNe
- Evolution of PWNe in SNRs

PWNe and Their SNRs

- Pulsar Wind
 - sweeps up ejecta; shock decelerates flow, accelerates particles; PWN forms
- Supernova Remnant
- sweeps up ISM; reverse shock heats ejecta; ultimately compresses PWN; particles accelerated at forward shock generate magnetic turbulence; other particles scatter off this and receive additional acceleration

Patrick Slane (CfA)

spin axis

Del Zanna et al. 2006

PWN Jet/Torus Structure

- Poynting flux from outside pulsar light cylinder is concentrated in equatorial region due to wound-up B-field
 - termination shock radius decreases with increasing angle from equator (Lyubarsky 2002)
- For sufficiently high latitudes, particle flow is deflected back inward
 - collimation into jets may occur
 - asymmetric brightness profile from Doppler beaming
- Collimation is subject to kink instabilities
 - magnetic loops can be torn off near TS and expand into PWN (Begelman 1998)
 - many pulsar jets are kinked or unstable, supporting this picture

Pulsar Jets – and Lots of Them

- Jets or jet-like structures are observed for ~20 young pulsar systems
 - the more we look the more we find, though evidence is weak for some

Kargaltsev & Pavlov 2008

Pulsar Jets – and Lots of Them

- Jets or jet-like structures are observed for ~20 young pulsar systems
 - the more we look the more we find, though evidence is weak for some
 - many more show toroidal structures or extended tails (possibly also jets)
- Sizes vary from <0.1 pc (CTA 1) to >10 pc (PSR B1509-58)
 no strong connection with dE/dt
- Jet luminosity ranges are huge:

 $5 \times 10^{-7} - 6 \times 10^{-3} \dot{E}$

Kargaltsev & Pavlov 2008

Patrick Slane (CfA)

Pulsar Jets – and Lots of Them

- Jets or jet-like structures are observed for ~20 young pulsar systems
 - the more we look the more we find, though evidence is weak for some
 - many more show toroidal structures or extended tails (possibly also jets)
- Sizes vary from <0.1 pc (CTA 1) to >10 pc (PSR B1509-58) - no strong connection with dE/dt
- Jet luminosity ranges are huge:

 $5 \times 10^{-7} - 6 \times 10^{-3} \dot{E}$

• Typical photon index $\Gamma \sim 1.6 - 2$

Patrick Slane (CfA)

- generally, uncooled synchrotron spectrum (Vela jets appears even harder)
- Where known, outflow velocities are subsonic: $v_{flow} \approx 0.1 0.5c$

Kargaltsev & Pavlov 2008

Curved Jets and Instabilities

PSR 1509-58

2000 Nov 30

2001 Dec 29

Pavlov et al. 2003

- Jet in PSR 1509–58 is <u>curved</u>, like in Crab
 variations in structure seen on timescale of several months (v ~ 0.5c)
- Jet in Vela is wildly unstable, showing variations on timescales of weeks to months

 changes in morphology suggest kink or sausage instabilities (Pavlov et al. 2003)

Patrick Slane (CfA)

Kes 75

- Bright wind nebula powered by PSR J1846-0258 (dE/dt = 10^{36.9} erg/s)
 jet-like structure defines rotation axis
- Deep Chandra observation reveals inner/outer jet features, clump in north, and abrupt jet termination in south
- jet spectrum is harder than surrounding regions, -> high-velocity (uncooled) flow
- clumps along jet axis vary in brightness over time

Patrick Slane (CfA)

Broadband Emission from PWNe

• Spin-down power is injected into the PWN at a time-dependent rate

 $L(t) = L_0 \left[1 + \frac{(n-1)P_0^2 L_0 t}{4\pi^2 I} \right]^{-(n+1)/(n-1)}$

 Based on studies of Crab Nebula, there appear to be two populations – relic radio-emitting electrons and electrons injected in wind (Atoyan & Aharonian 1996)

 $Q(E_e, t) = \begin{cases} Q_0(t)(E_e/E_b)^{-\alpha_1}, & \text{if } E_e < E_b \\ Q_0(t)(E_e/E_b)^{-\alpha_2}, & \text{if } E_e \ge E_b \end{cases}$

• Get associated synchrotron and IC emission from electron population, and some assumed B field (e.g. Venter & dE Jager 2006

Broadband Emission from PWNe

• Spin-down power is injected into the PWN at a time-dependent rate

 $L(t) = L_0 \left[1 + \frac{(n-1)P_0^2 L_0 t}{4\pi^2 I} \right]^{-(n+1)/(n-1)}$

 Based on studies of Crab Nebula, there appear to be two populations – relic radio-emitting electrons and electrons injected in wind (Atoyan & Aharonian 1996)

$$Q(E_e, t) = \begin{cases} Q_0(t)(E_e/E_b)^{-\alpha_1}, & \text{if } E_e < E_b \\ Q_0(t)(E_e/E_b)^{-\alpha_2}, & \text{if } E_e \ge E_b \end{cases}$$

- Get associated synchrotron and IC emission from electron population, and some assumed B field (e.g. Venter & dE Jager 2006
- More completely, assume wind injected at termination shock, with radial particle distribution and latitude-dependent magnetic component
- Evolve nebula considering radiative and adiabatic losses to obtain time- and spatiallydependent electron spectrum and B field (e.g. Volpi et al. 2008)

See talk by O.C. de Jager

- 3C 58 is a bright, young PWN
- morphology similar to radio/x-ray; suggests low magnetic field
- low-frequency spectral break suggests possible injection break
- PWN and torus region observed in Spitzer/IRAC and CFHT observations
 - jet structure not seen above diffuse emission

- 3C 58 is a bright, young PWN
 - morphology similar to radio/x-ray; suggests low magnetic field
 - low-frequency spectral break suggests <u>possible injection break</u>

- 3C 58 is a bright, young PWN
 - morphology similar to radio/x-ray;
 suggests low magnetic field
 - low-frequency spectral break suggests <u>possible injection break</u>
- PWN and torus region observed in Spitzer and CFHT observations
- IR flux for nebula falls within extrapolation of x-ray spectrum

 indicates single break just below IR
- Torus spectrum requires change in slope between IR and x-ray bands
 - challenges assumptions of single power law for injection into nebula

Patrick Slane (CfA)

- 3C 58 is a bright, young PWN
 - morphology similar to radio/x-ray; suggests low magnetic field
 - low-frequency spectral break suggests <u>possible injection break</u>
- PWN and torus region observed in Spitzer and CFHT observations
- IR flux for nebula falls within extrapolation of x-ray spectrum
 - indicates single break just below IR
- Torus spectrum requires change in slope between IR and x-ray bands
 - challenges assumptions of single power law for injection into nebula

Patrick Slane (CfA)

- Vela X is the PWN produced by the Vela pulsar
 - located primarily south of pulsar
 - apparently the result of relic PWN being disturbed by asymmetric passage of the SNR reverse shock
- Elongated "cocoon-like" hard X-ray structure extends southward of pulsar
 - clearly identified by HESS as an extended VHE structure
 - this is not the pulsar jet (which is known to be directed to NW); presumably the result of reverse shock interaction

Patrick Slane (CfA)

- XMM spectrum shows nonthermal <u>and</u> ejecta-rich thermal emission from cocoon - reverse-shock crushed PWN and mixed in ejecta?
- Radio, X-ray, and γ-ray measurements appear consistent with synchrotron and I-C emission from power law particle spectrum w/ two spectral breaks
 - density derived from thermal emission 10x lower than needed for pion-production to provide observed γ -ray flux
 - much larger X-ray coverage of Vela X is required to fully understand structure

Patrick Slane (CfA)

- Thermal properties of ejecta in/around Vela X constrain the PWN/RS interaction - expect additional compression and heating as RS meets PWN
- IXO will easily determine plasma parameters (temperature, density, abundances, and ionization state) in short exposures (e.g. Ly β /Ly $\alpha \rightarrow kT$, He α [F]/[R] $\rightarrow n_e$ t)
 - line diagnostics will trace evolution of ejecta mixed into Vela X
 - similar studies will be enabled for other (much fainter) known systems of this type

Patrick Slane (CfA)

Evolution in an SNR: Vela X

• Radio and VHE spectrum for entire PWN suggests presence of two distinct electron populations

- radio-emitting particles may be relic population, or a complicated injection spectrum...

- Maximum energy of radio-emitting electrons not well-constrained
 - this population will generate IC emission in GLAST band; spectral features will identify indentify emission from distinct up-scattered photon populations and constrain the underlying particle spectrum

Patrick Slane (CfA)

Conclusions

- Recent X-ray observations show that jet/torus structures around pulsars are common
 - jet sizes and luminosities span a huge range; structure can be highly variable and unstable
- PWNe are reservoirs of energetic particles injected from pulsar
 - synchrotron and inverse-Compton emission places strong constraints on the underlying particle spectrum and magnetic field
- Modeling of broadband emission constrains evolution of particles and B field

 modeling form of injection spectrum and full evolution of particles still
 in its infancy
- Reverse-shock interactions between SNR and PWNe distort nebula and may explain TeV sources offset from pulsars
 - multiwavelength observations needed to secure this scenario (e.g. Vela X)

