Magnetic Reconnection: dynamics and particle acceleration

J. F. Drake

University of Maryland

- M. Swisdak University of Maryland
- T. Phan UC Berkeley
- E. Quatert UC Berkeley
- R. Lin UC Berkeley
- S. Lepri U Michican
- T. Zurbuchen U Michican
- P. Cassak University of Delaware
- M.A. Shay University of Delaware

Magnetic Energy Dissipation in the Universe

- The conversion of magnetic energy to heat and high speed flows underlies many important phenomena in nature
 - solar and stellar flares
 - Energy releases from magnetars
 - magnetospheric substorms
 - disruptions in laboratory fusion experiments
- More generally understanding how magnetic energy is dissipated is essential to model the generation and dissipation of magnetic field energy in astrophysical systems
 - accretion disks
 - stellar dynamos
 - supernova shocks

Basic questions

- Known systems are characterized by a slow buildup of magnetic energy and fast release
 - Mechanism for fast release?
 - Why does reconnection occur as an explosion?
- Why does so much energy go into electrons?
 - Up to the range of MeV in the magnetosphere and solar flares
 - A significant fraction of the released magnetic energy in flares goes into electrons. Why?
- Energetic ions
 - Up to the GeV range in flares
 - Why is energy proportional to mass in solar energetic particle events?
- Recent observations suggest that in flares electrons and ions have a common mechanism for acceleration.
- Can reconnection compete with shocks as the source of energetic cosmic rays in the universe?

Magnetic Reconnection

- Reconnection is driven by the relaxation in tension in newly reconnected field lines
 - Pressure drop near near the x-line pulls in upstream plasma
 - Magnetic reconnection is self-driven
- Dissipation required to break field lines
- Key issue is how newly reconnected field lines at very small scales expand and release their tension

Large solar wind reconnection events

• Solar wind reconnection events are providing an important in-situ source of data for understanding reconnection

 $-390 R_{E}$ reconnection encounter (Phan et al 2006)

Resistive MHD Description

• Formation of macroscopic Sweet-Parker layer

$V \sim (\Delta_{sp} / L) C_A \sim (T_A / T_r)^{1/2} C_A << C_A$

Slow reconnection ⇒ not consistent with observations
sensitive to resistivity
macroscopic nozzle

• Petschek-like open outflow configuration does not appear in resistive MHD models with constant resistivity (Biskamp '86)

Hall Reconnection

- MHD model breaks down in the dissipation region at small spatial scales where electron and ion motion decouple
 - At scales below the ion inertial scale length $d_i = c/\omega_{pi}$
- Key is to understand how newly reconnected field lines expand at very small spatial scales where MHD no longer valid
 - The outflow from the x-line is driven by whistler and kinetic Alfven waves ⇒ dispersive waves
 - fast reconnection even for very large systems
- Key signatures of Hall reconnection have been measured by magnetospheric satellites and laboratory experiments

Why is wave dispersion important for the reconnection rate?

- Quadratic dispersion character
 - $\omega \sim k^2$

```
<sup>V</sup>p~k
```

- smaller scales have higher velocities
- weaker dissipation leads to higher outflow speeds

- flux from x-line $\sim vw$
 - » Flux insensitive to dissipation
 - » Reconnection rate insensitive to dissipation

Hall versus MHD reconnection

- MHD model produces rates of energy release too slow to explain observations -- macroscopic nozzle *a la* Sweet-Parker
- Hall model produces fast reconnection as suggested by Petschek

Reconnection Rates

- PIC simulation results from large periodic domains (Shay et al 2007)
- Asymptotic reconnection rate $E_r \approx 0.14$
 - Independent of domain size
 - Independent of electron mass
- Periodic versus open boundary simulations
 - Averaged reconnection rates in agreement
 - Modulation from secondary islands

Why is reconnection explosive?

• Slow Sweet-Parker reconnection and fast Hall reconnection are valid solutions for the same parameters

- Sweet-Parker solution does not exist below a critical resistivity
 - ⇒ Where $\delta_{sp} < d_i$ (e.g., Aydemir 92, Wang and Bhattaharjee 95)
 - $\Rightarrow \eta' \text{ and } \delta_{sp}$ decrease with time as reconnection proceeds $\eta' \sim B_{up}^{-1}$
 - ⇒ For the solar corona the critical temperature is around 100 eV and the reconnection rate will jump a factor of 10^5

Hall reconnection and stellar coronae

- Powerlaw distributions of flare energy release suggest that coronae evolve into an organized critical state
 - What controls this critical state?
 - Data suggests that at flare onset coronae lie at the boundary between Sweet-Parker and Hall reconnection
 - Flares increase the density until $\delta_{sp} \sim d_i$ where flares self-stabilize (Uzdensky 2007)
 - Similar behavior in accretion disc coronae (Goodman and Uzdensky 2008)

Energetic electron and ion production during reconnection in the heliosphere

- In solar flares energetic electrons up to MeVs and ions up to GeVs have been measured
 - Up to 50% of the released magnetic energy appears in the form of energetic electrons (Lin and Hudson, 1971)
 - Why is the electron energy linked to the energy release?
 - powerlaw distributions above $\sim 20 \text{ keV}$
 - Large numbers of energetic electrons
 - Correlation between energetic electrons and ions in impulsive flares possibly indicating a common heating mechanism
 - Enhancement of energetic high M/Q ions compared with ambient coronal values
- Observations of electron heating during magnetotail reconnection
 - Powerlaw distributions (Oieroset et al 2002)
 - Energetic electrons fill magnetic islands (Chen et al 2007)
- Heated ions in solar wind reconnection events (Gosling et al, 2005; Phan et al 2006)
 - Energy proportional to mass

Impulsive flare timescales

- Hard x-ray and radio fluxes
 - 2002 July 23 Xclass flare
 - Onset of 10's of seconds
 - Duration of 100's of seconds.

RHESSI and NoRH Data

(White et al., 2003)

RHESSI observations

- July 23 γ-ray flare
- Holman, *et al.*, 2003
- Double power-law fit of electron flux with spectral indices:

1.5 (34-126 keV)

Energetic electron and ion correlation

- > 300keV x-ray fluence (electrons) correlated with 2.23 MeV neutron capture line (> 30 MeV protons)
- Acceleration mechanisms of electrons and protons linked?

Shih et al 2008

Wind spacecraft trajectory through the Earth's magnetosphere

Wind magnetotail observations

- Wind spacecraft
 observations revealed
 that energetic electrons
 peak in the diffusion
 region (Oieroset, et al.,
 2002)
 - Energies measured up to 300kev
 - Power law distributions of energetic electrons

Single x-line model

• Can the parallel electric fields produced during reconnection explain the large number of energetic electrons?

Structure of the parallel electric field

- Parallel electric fields remain strongly localized along the magnetic separatrix close to the x-line
 - Electrons in a high temperature plasma short out the parallel electric field
 - Beware of models with macroscale parallel electric fields!!
 - Too localized to be energetically important
- PIC simulations overemphasize the importance of parallel electric fields since simulation domains are too small.
 - Beware of believing your own simulations

- Can parallel electric fields produce the large number of electrons seen in flares?
 - Around 10³⁷electrons/s
 - Downflow currents in a single x-line would be enormous
 - Producing 10⁹G fields for L~10⁹cm
 - Parallel electric fields are shorted out except near the x-line
 - kinetic modeling
- Magnetic energy is not released at the x-line but downstream as the reconnected fields relax their stress
 - The x-line dynamics breaks fieldlines but is not where energy is released
 - X-line has negligible volume on the physical scale of the region where energy is released in the corona
- Can't explain the large number of energetic electrons

Single x-line model: the sun

 \Rightarrow Must abandon single x-line model

Tsuneda 1997

A multi-island acceleration model

- Narrow current layers spawn multiple magnetic islands in guide field reconnection
- Secondary islands seen in observations
 - In the magnetosphere
 - Downflow blobs in the corona
- In 3-D magnetic islands will be volume filling

Multi-island reconnection

- Consider a reconnection region with multiple islands in 3-D with a stochastic magnetic field
- How are electrons and ions accelerated in a multi-island environment?

TRACE observations of downflow blobs

- Data from the April 21, 2002, X flare
- Interpreted as patchy reconnection from overlying reconnection site

A Fermi acceleration mechanism inside contracting islands

- Energy is released from newly reconnected field lines through contraction of the magnetic island
- Reflection of electrons from inflowing ends of islands yields an efficient acceleration mechanism for electrons even when the parallel electric field is zero (Kliem, 1994, Drake, et al., 2006)

$$\frac{d\varepsilon}{dt} = 2\varepsilon G \frac{C_{Ax}}{L_x} \qquad G(B_x, B_z) = \frac{B_x^2}{B^2}$$

- Energy gain independent of mass
 - Thermal ions are not fast enough to undergo multiple reflections
 - Need seed mechanism to generate super-Alfvenic ions

Electron Dynamics in simulation fields

- Electrons follow field lines and drift outwards due to $E \times B$ drift
 - Eventually exit the magnetic island
- Gain energy during each reflection from contracting island
 - Increase in the parallel velocity

PIC Simulations of island contraction

- Separating electron heating due to the Fermi mechanism from heating due to E_{\parallel} during reconnection is challenging
 - Study the contraction of an isolated, flattened flux bundle ($m_i/m_e = 1836$)

- Strong increase in T_{\parallel} inside the bundle during contraction
- 60% of released energy goes into electrons

Observational evidence for energetic electrons in magnetic islands

- Cluster magnetotail data during substorms (Chen, et al., 2007)
- Bipolar B_z and density peaks are signatures of magnetic islands

• Enhancement of energetic electrons up to 100keV within islands in the Cluster data

Linking energy gain to magnetic energy released

- Basic conservation laws
 - Magnetic flux \Rightarrow BW = const.
 - Area \Rightarrow WL = const.
 - Electron action \Rightarrow VL = const.
- Magnetic energy change with ΔL

$$\Delta W_B = \frac{B^2}{4\pi} \frac{\Delta L}{L} < 0$$

- Island contraction is how energy is released during reconnection
- Particle energy change with ΔL

$$\Delta \varepsilon = -\varepsilon \frac{\Delta L}{L} > 0$$
$$\varepsilon \sim \frac{B^2}{4\pi} \Rightarrow \beta_{\parallel} \sim 1$$

- Island contraction stops when
 - Marginal firehose condition
- Energetic electron energy rises until it is comparable to the released magnetic energy

Suppression of island contraction by energetic particle pressure

- Explore the impact of the initial β on the contraction of an initially elongated island
- With low initial β island becomes round at late time
- Increase in p_{\parallel} during contraction acts to inhibit island contraction when the initial β is high \Rightarrow contraction stops at firehose marginal stability

Key results

• Steady state kinetic equation for electrons

$$\vec{\nabla} \bullet \vec{u}f - \vec{\nabla} \bullet \kappa(v)\vec{\nabla}f = \frac{1}{3}A\left(1 - \frac{8\pi W}{3B^2}\right)^{1/2}\frac{dc_{Ax}}{dy}\frac{\partial}{\partial v}vf$$

- Electron energy gain linked to release of magnetic energy
- Powerlaw distributions of energetic electrons with spectral indices that depend on the incoming plasma β

```
-For Wind observations in magnetotail
```

$$f \sim v^2 F \sim E^{-3.6}$$

-For the solar corona

$$f \sim v^2 F \sim E^{-1.5}$$
$$F \sim v^{-5}$$

- Universal spectrum for low β_0
- Consequence of firehose marginal stability

Ion acceleration in flares

- Ions gain significant energy through large-scale Alfvenic flows
 - Does not facilitate the production of particles in the 100MeV to GeV range in the corona ⇒ energy gain is reversible
- Parallel electric fields are inefficient accelerators of ions
- Fermi contraction mechanism requires super-Alfvenic ions
 - Need seed mechanism
- What is the mechanism for the abundance enhancement of high M/Q ions in impulsive flares?

Impulsive flare energetic ion abundance enhancement

- During impulsive flares see heavy ion abundances enhanced over coronal values
- Enhancement linked to Q/M

Mason, 2007

Seeding super-Alfvenic ions through pickup in reconnection exhausts

- Ions moving from upstream cross a narrow boundary layer into the Alfvenic reconnection exhaust
- The ion can then act like a classic "pick-up" particle, where it gains an effective thermal velocity equal to the Alfvenic outflow c_A
 - The result is roughly energy proportional to mass (Fujimoto and Nakamura, 1994)

Ion acceleration during reconnection

- PIC simulation with $m_i/m_e=25$
- Focus on ion heating well downstream of the x-line?
- Sharp increase of T_i in the exhaust

Ion acceleration with a guide field

• A narrow boundary layer bounds the outflow exhaust

- Large E_y drives the outflow $(cE_y/B_z=c_{Ax})$

• Large guide field can magnetize the protons

 $B_{z0} = 5.0$

 $-\mu$ conserved for protons

Test particles in Hall MHD reconnection fields

- Protons and alpha particles remain adiabatic (µ is conserved)
 - Only mass 6 and above behave like pickup particles
 ⇒ because of large guide field
- For large mass ions

$$\Delta T_i \simeq \frac{1}{3} m_i c_{Ax}^2$$

1

Ion energy gain

 Irreversible portion

 $\Delta \vec{v}_i = \vec{v}_i - \vec{v}_{E \times B}$

- The ions that act like pickup particles -- those with high M/Q -- gain much more energy
- What is the threshold for acting like a pickup particle?

$$\frac{v_{iy}}{\Delta} \approx \frac{0.1c_{Apx}}{\rho_{sp}} > \Omega_i \Longrightarrow \frac{m_i}{Z_i m_p} > 10 \frac{c_{ps}}{c_{Apx}}$$

• For coronal parameters $(n \sim 3 \times 10^9/cm^3, T \sim 3 \times 10^{6} \, ^{\circ}\text{K})$ proton threshold is 60G

Only ions that act like pickup particles gain significant energy

Wind observations of solar wind exhaust

- $300R_E$ event (Phan et al., 2006)
- Exhaust velocity ~ 70km/s
- $\Delta T_p \sim 9 \text{eV} \text{ (measured} \sim 7 \text{eV} \text{)}$
- $\Delta T_{\alpha} \sim 36 \text{eV} \text{ (measured} \sim 30 \text{eV} \text{)}$

$$\frac{\Delta T_{\alpha}}{\Delta T_{p}} = \frac{m_{\alpha}}{m_{p}}$$

Wind solar wind exhaust data

- Data from 22 solar wind reconnection exhaust encounters
- Proton temperature increase in exhaust is given by

 $3\Delta T_p \simeq 0.39 m_p \Delta v^2$

Production of energetic ions during flares

- Ions are seeded to super-Alfvenic velocities through interaction with reconnection exhausts
- Once the ions are super-Alfvenic the Fermi island contraction mechanism also acts on ions
 - Produces $v^{-5}(E^{-1.5})$ distribution as for electrons?
 - Are the v⁻⁵ distributions seen by the Fisk/Gloeckler in the solar wind related related?
- What about abundance enhancements of high M/Q ions?
 - Linked to the threshold for pickup behavior

Abundance enhancements in impulsive flares

• Ion pickup criterion can be rephrased as a threshold on magnetic island width w_c .

$$\frac{m_i}{Z_i m_p} > 10 \frac{c_{sp}}{c_{Axp}} \qquad c_{Axp} \simeq c'_{Axp} w_c > 10 c_{sp} \left(\frac{Z_i m_p}{m_i}\right)$$
- Higher M/Q ions have lower island width thresholds

• Rate of production of pickup ions

$$\frac{dN_i}{dt} \sim \sum_{w > w_c} 0.1 c_{Ax} L_w \sim \sum_{w > w_c} w^2 \sim \int_{w_c}^{\infty} dw w^2 P(w)$$

– Take powerlaw distribution of island widths: $P(w) \sim w^{-\alpha}$

$$\frac{dN_i}{dt} \sim w_c^{3-\alpha} \sim \left(\frac{Z_i m_p}{m_i}\right)^{3-\alpha}$$

- Match the observations if $\alpha \sim 6.26 \Rightarrow$ reasonable

Universal ion spectrum in the quiet solar wind

Gloeckler et al, 2006

- Proton spectra of the form $f \propto v^{-5}$ are often observed
- Similarity to spectra from the Fermi mechanism is striking

Conclusions

- Coupling to dispersive waves at small spatial scales facilitates fast magnetic reconnection in large systems at rates that are insensitive to dissipation
- Reconnection is bistable for a huge range of resistivity (a factor of 10⁶ in the case of the solar corona)
 - A slow Sweet-Parker and fast Hall reconnection solutions exist for the same parameters
 - Below a critical resistivity the slow solution disappears causing an increase in the rate of reconnection by six orders of magnitude
 ⇒Reconnection occurs as an explosion
- Stellar coronae may be in a state of self-organized criticality at the boundary defining the onset of fast reconnection

Conclusions (cont.)

- High energy particle production during magnetic reconnection involves the interaction with many magnetic islands
 - Not a single x-line
- Acceleration of high energy electrons is controlled by a Fermi process within contracting magnetic islands
- Particle distributions of energetic electrons take the form of powerlaws
 - Low initial pressure as in the solar corona yields harder spectra than in the magnetosphere
 - Universal spectrum with a spectral index of 1.5
- Electrons gain is linked to the energy released during magnetic reconnection

Conclusions (cont.)

- Ion interaction with the reconnection exhaust seeds them to super-Alfvenic velocities.
 - Ions that act as pickup particles as they enter reconnection exhausts gain most energy
 - M/Q threshold for pickup behavior
 - Gain a thermal velocity given by the Alfven speed
 - Wind and ACE observations support this picture
- Interaction with reconnection exhausts should enable energetic ions to be accelerated through Fermi contraction
 - Possibly leading to the $f \sim v^{-5}$ distributions?

Magnetic Reconnection Simulation

-2.58495 2.14777