Electron acceleration at quasi-perpendicular shocks: The effects of surface fluctuations

D. Burgess Astronomy Unit Queen Mary, University of London

[With thanks to: Jon Woodcock (programming), Marc Palupa and Stuart Bale (STEREO data)]

- 1. Motivations
- 2. Fast-Fermi models
- 3. Structure within shock ramp
- 4. Electron orbits: suprathermal to energetic
- 5. Conclusions

Will not discuss ... electron thermalization, electron foreshock, models relying on "electron-scale" waves, etc.

- Anderson et al. [1979]...
 - > 16kEv and 5keV fluxes seen as spikes, with source near tangent point, $\theta_{Bn} > 85^{\circ}$.
- Gosling et al. [1989] ...
 - field-aligned upstream component "develops" out of distribution at shock and downstream.
 - suprathermal flux appears as power law tail (exponent 3–4) merged onto downstream thermal distribution, "pancake" distribution at ramp
 - argue that mirroring would not produce downstream energetic distributions

Fig. 4. ISEE-2 observations of upstream particles on 1 December 1977. Note the velocity dispersion in the electrons near onset (~2158). (From Anderson et al. /8/.)

Fast-Fermi Acceleration: Adiabatic Reflection

- Leroy and Mangeney [1984], Wu [1984]
 - Reflection of a small fraction of incident thermal distribution
 - In zero-E, shock (de Hoffman-Teller) frame particles conserve energy and magnetic moment
 - Maximum energization when shock close to perpendicular ($\theta_{Bn} = 90^\circ$)
 - But . . . reflected fraction decreases as θ_{Bn} increases
 - Sensitive to details of wings of distribution function

Modelling Fast-Fermi Electron Acceleration

Analytic results ...

Initial distributions ...

Fig. 2. Comparison of a Maxwellian velocity distribution to a κ distribution with index $\kappa = 6$. Note that there is no significant deviation for velocities v smaller than 2 thermal velocities v_{th} .

STEREO Observations (Pulupa & Bale, 2008)

Overview ...

Spectra ...

Modelling Electron Acceleration

- Two dimensional hybrid simulations: electron fluid and particle ions
 - Magnetic field in simulation plane \rightarrow field aligned perturbations allowed
 - Magnetic field *out of* simulation plane \rightarrow field aligned perturbations *NOT* allowed
- B out of plane \rightarrow looks like 1D
 - and same for electron acceleration ...
 - and not discussed further!

Rippled Shock: Fields

- Magnetic field in simulation plane
 - In B_x ripples propagate along shock surface
 - short-lived wave packets in foot, ie "whistler"
 - Variation of field magnitude along a field line as it convects through shock

- Ripples propagate at Alfvén speed of overshoot
- Ripples only seen above certain Mach number
- Presence of ripples depends on reflected ions (ie supercritical Mach number)

Simulation of Electron Acceleration

- Test particle electrons in fields from 2D hybrid simulation.
- High order integration scheme for high accuracy over long time scales.
- Adaptive time step electrons motion *along* field line leads to rapid time variations of field sensed by particle.
- Interpolation from hybrid grid linear in time, cubic spline in space.

Simulation of Electron Acceleration: Synthetic Energy Spectrum

• Different initial energies • Weight by incident distribution Ó 0.0 (Kappa or Maxwellian) • Sum to form final spectum dJ/dE (Upstream) <u>19</u> 1

₹ 1 90,1

Initial kappa distribution $\kappa = 4$:

10

-1

E (ke∀)

100

Initial kappa distribution $\kappa = 4$: Initial Maxwellian: ó ó Ò ō õ ream) (Upstr ų, ਤੇ e T C Ŧ 1-0 1-0 $-13\,10^{-12}\,10^{-1}$ -01-14 10-14 10-11 100 10 10 100 E (keV) E (keV)

Electron Trajectories: $\theta_{Bn} = 88^{\circ}$, $M_A = 5.7$, $E_0 = 500 \text{eV}$

- Benign (boring?) reflection.
- Low energy gain factor.

- Reflected
- Reasonable energy gain factor
- Multiple reflection within foot and ramp, but never reaches peak
- Encounter scales: as before

- Reflected.
- "Double" encounter: periods of pitch angle scattering going in and out of foot/ramp to overshoot.

Electron Trajectories: $\theta_{Bn} = 88^{\circ}$, $M_A = 5.7$, $E_0 = 50 \text{keV}$

- Reflected
- "Classic" shock drift signature, but only goes little way into ramp.
- Initial pitch angle close to 90° .
- Interaction time $\sim 0.3 \Omega_{cp}^{-1}$

Summary: Electron Acceleration

- Pitch angle scattering crucial to explain suprathermal power law.
- Effective reflection over wider range of θ_{Bn} than adiabatic reflection
- Downstream and upstream distributions at similar levels: appearance of leakage?