Observations of jets in X-ray binaries

Tom Maccarone (University of Southampton)

ING archive/Nick Szymanek

ESO PR Photo 40b/99 (17 November 1999)

C European Southern Ob

Russell et al. 2007

Stirling et al. 2001

Black Hole X-ray binaries: key sources for understanding accretion-ejection phenomenology

Strong source variability
Variability on accessible timescales
Moderately bright radio sources
Relatively small mass range
Simple systems – no boundary layers or surface magnetic fields

GRO J1655-40 RXTE light curve

	Neutron star X-ray binaries	Stellar mass black holes	Supermassive black holes
Object Mass	1.4+-0.1 solar masses?	5-15 solar masses	10 ⁴ -10 ⁹ solar masses
Accuracy of mass estimates	Masses in small range	Masses accurate to ~20%	Masses accurate to factors of ~2
Surface?	Solid surface, boundary layer	No surface	No surface
Surface magnetic field	B=10 ³ -10 ¹² G	B=0	B=0
Viscous timescale	t _{ation} ~ days	t _{vize} ~ weeks	t _{vite} ~ millenia or more
Dimensioniess spin parameter	j≪-0.I	j0.5-0.977	j from -1 to 1777?
Distance accuracy	Distances to ~10% in many cases	Distances to ~30% in many cases	Distances from Hubble Law
Characteriștic angular șcale	R _{SCH} ~ 10 ⁻¹⁰ arcsec	R _{sen} ~ 10 ¹⁰ arcsec	R _{32H} < 10 ⁻⁵ arcsec

Spectral States - SEDs

· data from Miller et al. (2001) for XTE J 1748-288

Variability and states

Low/hard state

- Characterized by cutoff power law spectrum, well modeled by thermal Comptonization (Thorne & Price 1975)
- Strong, broadband aperiodic variability
- Debate over geometry "sphere+disk" or corona above a disk

High/soft state

 Well modeled by multi-color blackbody models – i.e. standard Shakura & Sunyaev (1973)/Novikov & Thorne (1973) disks, sometimes with weak power law tails

 Very little variability seen at any frequency, and what's seen is probably driven by the power law

Intermediate states

• At transitions, intermediate states exist

- in a few very bright sources, they can be long lived, and are called very high states
- Spectra intermediate between low/hard and high/soft states
- Variability roughly intermediate, except for strong, relatively high Q quasi-periodic oscillations which are often seen in transitions, but not in the other states

When are different states seen?

HS -> LS transition – always near 2% of Eddington (Maccarone 2003)

LS-> HS transition – luminosity seems to depend on size of accretion disk (Shahbaz, Charles & King 1998; Portegies Zwart, Dewi & Maccarone 2005)

black hole transients from Maccarone & Coppi SS Cyg – from McGowan et al. (2003)

When are jets seen (and not seen)?

Steady jets seen in low/hard states

 Seen as transient, high luminosity, highly relativistic episodes in hard very high states

 "Quenched" in high/soft states (Tananbaum et al. 1972; Harmon et al. 1995; Fender et al. 1999)

Jet Properties in Low/Hard State

- Radio luminosity correlates with X-ray luminosity in low/hard state
 - $L_r \alpha L_x^{0.7}$ (Corbel et al. 2003; Gallo, Fender & Pooley 2003)
 - only Cygnus X-1 has been imaged
 - Flat radio spectrum (i.e. f, approx constant) with break typically in the infrared

Jet-disk coupling in the low/hard state

from Gallo, Fender & Pooley (2003)

Jet Properties in Intermediate states

- Transient, "bullet-like" episodes often seen
- Sometimes very highly extended
 - Where spectra are measured, usually, but not always, steep spectrum (i.e. $f_v \sim v^{-0.7}$)
- Sometimes seen in X-rays
- Apparent superluminal motions can imply β>0.9 in several cases (e.g. Mirabel & Rodriguez 1994; Hjellming & Rupen 1995)
- External shocks against low state jet? (Vadawale et al. 2001; Fender, Belloni & Gallo 2003)

The Extended Jet from XTE J1550-564

figure from Tomsick et al. (2003)

Neutron star jets

from Migliari & Fender 2006

Some speculation

- Boundary layers: the key to "soft state" jets?
- Seen in the bright neutron stars, supersoft sources, and T Tauri stars, and also recent SS Cyg radio observation
- Not seen in black holes
- The "central energy source" of Livio (1999)?
 - or, a way to generate large scale height magnetic fields without a geometrically thick disk?
 - Or, magnetic field of neutron star/WD seeds jet production?

Jet kinetic power

- Upper limit can come from state transitions
 - Luminosity is continuous across state transitions, so kinetic power at the transition cannot be large compared to radiative power (Maccarone 2005)
- Lower limit from multiple methods
 - Equipartition of energy in jets
 - Odd coupling of optical and X-ray variability in XTE J 1118+480 (Malzac, Merloni & Fabian 2004)
- Roughly equal jet kinetic power and total accretion flow radiative power at state transition
- Seems to be true in neutron star systems as well, and even in SS Cyg (various papers by Koerding et al)

Conclusions

- X-ray binaries provide an important probe of accretion in general
- There are dimensions of the problem of jet formation accessible from observations of Xray binaries, but not observations of AGN
 - Long timescale variability, effects of solid surfaces, effects of different chemical composition of materials
- Most stellar mass black hole sources fit a well-defined pattern for jet behavior as a function of X-ray source behavior; Low B neutron stars follow this pattern less well, high B neutron stars are completely different, data on white dwarfs is quite spotty
- Solid surfaces may help promote jet formation in some cases, harm formation in others