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Black Hole X-ray binaries: key sources for
understanding accretion-¢jection phenomenology
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Neutron star X-ray
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Spectral States - SEDs
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data from Miller et al. (2001) for XTE J 1748-288




Variability and states
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Low/hard state
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e Characterized by cutoff power law
spectrum, well modeled by thermal
Comptonization (Thorne & Price 1975)

® Strong, broadband aperiodic variability

® Debate over geometry - “sphere+disk™ or
corona above a disk



High/soft state
L —

e \Well modeled by multi-color blackbody
models — i.e. standard Shakura & Sunyaev
(1973)/Novikov & Thorne (1973) disks,

sometimes with weak power law tails

e Very little variability seen at any frequency,
and what's seen is probably driven by the
power law



Intermediate states

e At transitions, intermediate states exist

® in a few very bright sources, they can be long
lived, and are called very high states

® Spectra intermediate between low/hard and
high/soft states

e Variability roughly intermediate, except for
strong, relatively high Q quasi-periodic
oscillations which are often seen in
transitions, but not in the other states



When are different states seen¢

Spectral hardness




SS Cygni; RXTE/PCA
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When are jetfs seen (and not
seen)e
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o Steady}e?s seen in low/hard states

® Seen as transient, high luminosity,
highly relativistic episodes in hard
very high states

e "Quenched" in high/soft states
(Tananbaum et al. 1972; Harmon

et al. 1995; Fender et al. 1999)
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Jet Properties in Low/Hard
State

e Radio luminosity correlates with X-ray
luminosity in low/hard state

e L al? (Corbeletal 2003; Gallo, Fender &
Pooley 2003)

® only Cygnus X-1 has been imaged
e Flat radio spectrum (i.e. f approx constant) with
break typically in the infrared



Jet-disk coupling In the
low/hard stafe
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Jet Properties in Infermediate
states
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e Transient, "bullet-like" episodes often seen

e Sometimes very highly extended
® \Where spectra are measured, usually, but not always,
steep spectrum (i.e. f ~v®’)
® Sometimes seen in X-rays

® Apparent superluminal motions can imply 3>0.9 in several
cases (e.g. Mirabel & Rodriguez 1994; Hjellming & Rupen
1995)

e External shocks against low state jet? (Vadawale et al.
2001; Fender, Belloni & Gallo 2003)



The Extended Jet from XTE J1550-564
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figure from Tomsick et al. (2003)




Nevutron star jets

Hard state Soft state Very-High state

{Thermal state) (Steep Power—Law state)

e [ainter than black holes when hard

X-rays are strong | Open:BH
e consistent with square of black . .
hole relation, implying advection Closed:NS

in black holes (Koerding et al.
2006)

e Brighter than black holes in soft
states

e not yet well understood

e Some data from ultracompact
X-ray binaries. Is this
important?
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e Seen only from low B neutron stars

(i.e. not HMXB pulsars)




Some speculation
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e Boundary layers: the key to “soft state” jets?

e Seen in the bright neutron stars, supersoft sources, and T Tauri
stars, and also recent SS Cyg radio observation

® Not seen in black holes

® The “central energy source” of Livio (1999)?

® or, a way to generate large scale height magnetic fields
without a geometrically thick disk?

e Or, magnetic field of neutron star/\WWD seeds jet production?



Jet kinetic power
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e Upper limit can come from state transitions

e | uminosity is continuous across state transitions, so kinetic power at the
transition cannot be large compared to radiative power (Maccarone 2005)

e |ower limit from multiple methods

e Equipartition of energy in jets

e (Odd coupling of optical and X-ray variability in XTE J 1118+480 (Malzac,
Merloni & Fabian 2004)

e Roughly equal jet kinetic power and total accretion flow radiative
power at state transition

® Seems to be true in neutron star systems as well, and even in
SS Cyg (various papers by Koerding et al)



Conclusions
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e X-ray binaries provide an important probe of accretion in general

e There are dimensions of the problem of jet formation accessible from observations of X-

ray binaries, but not observations of AGN

e Long timescale variability, effects of solid surfaces, effects of different chemical
composition of materials

e Most stellar mass black hole sources fit a well-defined pattern for jet behavior as a function
of X-ray source behavior; Low B neutron stars follow this pattern less well, high B neutron

stars are completely different, data on white dwarfs is quite spotty

e Solid surfaces may help promote jet formation in some cases, harm formation in others
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