The role of the Weibel instability in $e^- - e^+$ reconnection

Marc Swisdak Collaborators: Yi-Hsin Liu, Jim Drake

IREAP University of Maryland

Kinetic Modeling of Astrophysical Plasmas 8 October 2008

Marc Swisdak Collaborators: Yi-Hsin Liu, Jim Drake The role of the Weibel instability in $e^- - e^+$ reconnection

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Summary

 Pair reconnection is fast, v_{in} ~ O(0.1)v_A. The Hall term is sufficient, but not necessary, for fast reconnection,

• The Weibel instability, feeding on the temperature anisotropy in the reconnection outflow, keeps reconnection fast.

Generalized Ohm's Law

Rewrite the fluid momenta equations:

$$(1 + \mu) \mathbf{E} = -\frac{1 + \mu}{c} \mathbf{v} \times \mathbf{B} + \frac{1 - \mu}{nec} \mathbf{J} \times \mathbf{B} - \frac{1}{ne} \nabla \cdot (\mathbf{P}_e - \mu \mathbf{P}_i) + \frac{m_e}{ne^2} \left[\frac{\partial \mathbf{J}}{\partial t} + \nabla \cdot \left(\mathbf{J} \mathbf{v} + \mathbf{v} \mathbf{J} - \frac{1}{ne} \frac{1 - \mu}{1 + \mu} \mathbf{J} \mathbf{J} \right) \right]$$

•
$$\mu = m_e/m_i$$

• $\mathbf{v} = (m_e \mathbf{v_e} + m_i \mathbf{v_i})/(m_e + m_i)$

P is the pressure tensor

•
$$n_i = n_e = n, q_i = -q_e = 1$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Generalized Ohm's Law in Pair Plasmas

In pair plasmas $\mu = 1$:

$$\mathbf{E} = -\frac{1}{c} \mathbf{v} \times \mathbf{B}$$
$$-\frac{1}{2ne} \nabla \cdot (\mathbf{P}_{e} - \mathbf{P}_{i})$$
$$+\frac{m_{e}}{2ne^{2}} \left[\frac{\partial \mathbf{J}}{\partial t} + \nabla \cdot (\mathbf{J}\mathbf{v} + \mathbf{v}\mathbf{J}) \right]$$

- Mass symmetry eliminates the Hall term
- Also removes the usual dispersive modes such as the whistler and kinetic Alfvén waves.
- Does fast reconnection then occur?

PIC Simulations

- Large 2.5D kinetic simulations
 - 800×200 inertial lengths
 - 1000 ω_{ce}⁻¹
 - 1000+ processors
- But ... astrophysically small
 - Length: Inertial length

$$\frac{c}{\omega_p} = 5 \left(\frac{1 \text{ cm}^{-3}}{n}\right)^{0.5} \text{ km}$$

• Time: Inverse cyclotron frequency

$$\omega_c^{-1} = 0.06 \left(\frac{1\mu G}{B} \right) s$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

• Non-relativistic: $c/v_A = 5$

Pair Reconnection Synopsis

- Top: v_{ex} overplotted with magnetic field lines. Solid & dashed lines indicate opposite signs of reconnecting field.
- Bottom: Out-of-plane *B*. Note the lack of a quadrupole.

Current Layer Comparison

- Out-of-plane electron velocities.
- Top panels: System-size current layers.
- Bottom panels: Current layer length about constant.
- Instability development stops growth.

Reconnection Rate

- Minimal variation with box size.
- In general: rate $\equiv v_{in}/v_{out} = (\Delta/L)(n_{out}/n_{in})$.

Why Weibel?

- Top: Out-of-plane *B*. Middle: Positron T_{xx} and T_{yy} .
- Bottom: Distributions. Electrons are green, positrons blue.

Extensions and Implications

- Top: Marginal instability of Weibel within a current layer.
- Bottom: Weibel in a 1600×400 box with B_z suppressed. Longer current layer, lower reconnection rate.

Role of Secondary Islands

Alternate theory of fast pair reconnection.

- v_{ez} at $\delta t = 25$ beginning at t = 600 for run d.
- Secondary islands remain modestly sized and convect downstream. They have little effect on the overall structure of the current layer.

Marc Swisdak Collaborators: Yi-Hsin Liu, Jim Drake The role of the Weibel instability in $e^- - e^+$ reconnection

- Pair reconnection is fast, v_{in} ~ O(0.1)v_A. The Hall term is sufficient, but not necessary, for fast reconnection,
- For small systems (≤ 200*d_i*) the current layer is system size. For larger systems the Weibel instability keeps the layer short.
- Open questions: Why should the reconnection rate be 0.1 across multiple systems? Would suppression of this instability lead to slow pair reconnection?
- See Swisdak, Liu, and Drake, *ApJ*, 680, 2, 999, 2008.

ヘロト 人間 とくほ とくほ とう

Table: Simulation parameters.

Run Label	Domain Size	Gridpoints
а	100 imes 50	512 imes 256
b	200 imes 100	1024 imes 512
С	400 imes 200	2048 imes 1024
d	800×200	4096×1024

Table: Parameters during steady reconnection.

Run Label	<i>n</i> in	n _{out}	2δ	2Δ	Vout	<i>V</i> in,meas	V _{in,calc}
а	0.16	0.27	4.0	35	0.5	0.13	0.10
b	0.12	0.32	4.0	80	0.8	0.15	0.11
С	0.13	0.33	4.5	120	1.3	0.16	0.12
d	0.13	0.30	5.0	135	1.3	0.13	0.11

Marc Swisdak Collaborators: Yi-Hsin Liu, Jim Drake The role of the Weibel instability in $e^- - e^+$ reconnection

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで