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@ Pair reconnection is fast, vi, ~ O(0.1)va. The Hall term is
sufficient, but not necessary, for fast reconnection,

A" A

@ The Weibel instability, feeding on the temperature
anisotropy in the reconnection outflow, keeps reconnection
fast.
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Generalized Ohm’s Law

Rewrite the fluid momenta equations:
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@ 1= me/m;

@ vV = (mgVe + MjVj)/(mMe + m;)
@ P is the pressure tensor
@N=nN=nQq=—Qe=1
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Generalized Ohm’s Law in Pair Plasmas

In pair plasmas p = 1:
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@ Mass symmetry eliminates the Hall term

@ Also removes the usual dispersive modes such as the
whistler and kinetic Alfvén waves.

@ Does fast reconnection then occur?
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PIC Simulations

@ Large 2.5D kinetic simulations

@ 800 x 200 inertial lengths
e 1000w
e 1000+ processors

@ But ... astrophysically small
e Length: Inertial length

-3 0.5
< _ 5 (1 cm ) km

e Time: Inverse cyclotron frequency

wg ' =0.06 (“;G) s

@ Non-relativistic: c/v4 =5
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Pair Reconnection Synopsis
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@ Top: vex overplotted with magnetic field lines. Solid &
dashed lines indicate opposite signs of reconnecting field.

@ Bottom: Out-of-plane B. Note the lack of a quadrupole.
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Current Layer Comparison
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@ Bottom panels: Current layer
length about constant.

@ Instability development stops
growth.
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Reconnection Rate
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@ Minimal variation with box size.
@ In general: rate = iy /Vout = (A/L)(Nout/ Nin)-
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Why Weibel?
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@ Top: Out-of-plane B. Middle: Positron Tyy and Ty, .
@ Bottom: Distributions. Electrons are green, positrons blue.
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Extensions and Implications

Marginal instability

@ Top: Marginal instability of

x0.min

S Weibel within a current
layer.
@ Bottom: Weibel in a
S5 0 st is 2 1600 x 400 box with B,
suppressed. Longer current
i . . layer, lower reconnection
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Role of Secondary Islands
Alternate theory of fast pair reconnection.
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@ Vg at 6f = 25 beginning at t = 600 for run d.

@ Secondary islands remain modestly sized and convect
downstream. They have little effect on the overall structure
of the current layer.
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@ Pair reconnection is fast, vi, ~ O(0.1)va. The Hall term is
sufficient, but not necessary, for fast reconnection,

@ For small systems (< 200d;) the current layer is system
size. For larger systems the Weibel instability keeps the
layer short.

@ Open questions: Why should the reconnection rate be 0.1
across multiple systems? Would suppression of this
instability lead to slow pair reconnection?

@ See Swisdak, Liu, and Drake, ApJ, 680, 2, 999, 2008.
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Simulations

Table: Simulation parameters.

Run Label Domain Size  Gridpoints

a 100 x 50 512 x 256

b 200 x 100 1024 x 512
c 400 x 200 2048 x 1024
d 800 x 200 4096 x 1024

Table: Parameters during steady reconnection.

Run Label  ny, Nout 20 2A  Vout Vinmeas Vin,calc

a 0.16 027 40 35 05 0.13 0.10
b 0.12 032 40 80 0.8 0.15 0.11
c 0.13 033 45 120 1.3 0.16 0.12
d 0.13 030 5.0 135 13 0.13 0.11
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