PARTICLE-IN-CELL SIMULATIONS OF PULSAR WINDS

A. Melatos (U. Melbourne) O. Skjaeraasen (IFE, U. Oslo)

- 1. "Magnetically striped" relativistic outflow
- 2. Self-consistent wave: formation & stability
- 3. Energy transport: $EM \rightarrow KE$
- 4. H α and X-ray bow shocks

BOX CALORIMETRY

PLERION

Vela

BOW SHOCK

J2124

Black Widow

WAVE-LIKE WIND

Global plasma wave oscillating at Ω_*

I. ENTROPY WAVE

- Alternating magnetic stripes separated by neutral sheets (Coroniti 90; Lyubarsky & Kirk 01)
- MHD \rightarrow "frozen in" $\rightarrow V_{\text{phase}} = V_{\text{wind}}$

$$\begin{array}{c|c}
B \\
\hline B \\
\hline E \\
\hline B \\
\hline C \\
\hline B \\
\hline C \\
\hline C$$

Reconnection stabilized by streaming

- Time dilation $(dN_{\pm}/dt < 10^{40} \text{ s}^{-1})$
- B field annihilated at shock (Lyubarsky 03)

II. EM WAVE

- Sub or superluminal: $V_{\text{phase}} \neq V_{\text{wind}}$
- (Slightly) nonzero electric field in bulk frame
- Propagates in overdense plasma: $\omega < \omega_p$ (Akhiezer & Polovin 56; Kennel et al. 76)
- Transverse-longitudinal

Parametric decays stabilized by streaming

- Time dilation: $V_{\text{phase}} \approx c \approx V_{\text{wind}}$ (cf. Asseo et al. 80)
- Radiation losses $\propto (d/dt)^4 = (1 V_{\text{wind}}/V_{\text{phase}})^4 \approx 0$

FORMATION

Self-consistent wave ↔ many proper cycles

- Particle-in-cell (PIC) simulations (2.5D)
- Continuous antenna
- Circular & linear polarization
- Nonlinear: $eE/mc\omega >> 1$
- Launch with **pre-streaming** relativistic e^{\pm}
- $30-200 \lambda$ in box with noise < 10%

What happens "in the long run"?

ANTENNAE: A CRITIQUE

ENTROPY WAVE

- Usually preloaded, i.e. no antenna (Lyubarsky 03)
- Zero proper cycles \rightarrow self-consistent wave?
- **Oblique** rotator = tilted split monopole (Bogovalov 99) ... BUT e^{\pm} flux has $\partial/\partial t \neq 0 \neq \partial/\partial \phi$ at launch
- Force-free simulations (Spitkovsky 06) ... BUT artificial resistivity wherever $E \cdot B \neq 0$

EM WAVE

"Any" antenna & constant (or oscillatory) e[±] flux
 ... NOT tuned exactly to entropy wave

PIC SIMULATIONS

WAVE "SURVIVES" SHOCK

(Skjaeraasen et al. 05)

Wave survives ~ 10^2 skin depths beyond shock

KEY PIC RESULTS

- Self-consistent, phase-coherent EM wave if:
 - \rightarrow strong antenna (PSR) decelerates flow
 - (V_{wind}) by transverse acceleration
 - \rightarrow dense plasma (GRB) boosts $J_{\text{cond}} \& V_{\text{phase}}$
- "Stationary" wave after 10² 10³ skin depths
- EM > or < KE asymptotically

- Still need $V_{\text{phase}} \sim c \sim V_{\text{wind}}$ to suppress parametric instabilities & radiation losses
- BUT antenna-driven wave less "fragile" than hypothetical infinite wave (cf. Asseo et al. 80)

• $J \cdot E \neq 0$ at injection (cf. infinite wave)

 \rightarrow field \downarrow as it accelerates e^{\pm} transversely

• $J \cdot E$ switches sign at $x \approx 20$

 \rightarrow energy transfer reverses

• Field-momentum relative phase = $0 \rightarrow \pi/2$ \rightarrow semi-stationary wave after ~ 100 c/ ω_p

- Initially: transverse heating as e[±] and fields tend towards stationary relative phase
- Streaming slows as T_{\perp} rises and $(V \times B)_x < 0$
- Later: *J*·*E* switches sign, **longitudinal heating** by weak electrostatic field

- Can easily form high-σ or low-σ flows
- Start with $\sigma_0 = 80$, end up with $\sigma_\infty \approx 1$ $\sigma_0 = 10^3$ $\sigma_\infty \approx 10$
- EM & KE independent only if circular pol'n

IS ANY OF THIS MHD?

- Pulsar magnetosphere emits dense plasma
- Shorts out rest-frame electric field E'
- Superluminal EM wave "must have" $E' \neq 0$
- True... BUT tiny *E*' if streaming!

 $E + V \times B \approx 0 \rightarrow \text{nearly MHD!}$

$\textbf{EM} \rightarrow \textbf{KE} \ \textbf{CONVERSION}$

σ = EM flux : KE flux

- Shock: $\sigma \approx 10^{-3}$ so MHD flow can decelerate from shock (c/3) to edge of PWN (1500 km s⁻¹)
- **Pulsar:** $\sigma \approx 10^{6}$ (e^{\pm} cascades)

- Force-free linear accelerator (Contopoulos et al. 02)
- Reconnection in striped wind (Lyubarsky & Kirk 01)
- Annihilation in shock (Lyubarsky & Petri 07)
- Wave conversion via instability (Melatos & Melrose 96)

- Small radial magnetic field (e.g. spiral, or self)
- High- σ , subluminal \rightarrow low- σ , superluminal wave: parametrically unstable at $\approx 10^7 \lambda$ (Melatos 98)
- How? Why so "silent"?

$H\alpha$ BOW SHOCKS

PSR J2124-3358

(Gaensler et al. 02; Chatterjee et al. 07)

- Energy flux v. latitude
 - **EM** wave ("vacuum dipole") $\propto 1 + \cos^2 \theta$
- Entropy wave (split monopole) $\propto \sigma^{-1} + sin^2\theta$

Bow shock shape?

"EM WAVE"

"ENTROPY WAVE"

- Density contours (pure hydro)
- Indistinguishable along most lines of sight

Spin ∠ kick; density wall; Doppler (Vigelius et al. 07)

X-RAYS FROM THE DOUBLE PSR

- Shock intercepts 0.1% of A's spin-down power
- Shock ~ $10^3 R_L$ from A
- Predict high σ
- If high σ , expect low L_X $L_X \approx L_{\rm cap}/(8\sigma^{1/2})$
- If low σ , expect high L_X $L_X \approx L_{cap}$ and orbital modulation

- A = nonthermal pulses
- B = nothing
- Zero orbital modulation (epoch folding, H statistic)
- Spectra (Chandra, XMM) $L_{\text{shock}} < 0.0002 L_A << L_{\text{cap}}$
- Consistent with high σ
- Cf. magnetic annihilation in shock itself (Lyubarsky 03)

SUMMARY

- Self-consistent, antenna-driven EM wave forms after ~ 10^2 skin depths (low or high σ)
- Subluminal (EM) \rightarrow superluminal (KE)
- H α (PWN) & X-ray (double PSR) bow shocks

Things to do!

- Ponderomotive "pinching" (Skjaeraasen et al. 08)
- Charge starvation in diverging flow with PIC
- Match antenna to magnetosphere
- Magnetar winds in GRBs (Bucciantini et al. 07)

- e[±] angular momentum w.r.t. instantaneous electric vector (space-independent frame)
- **Constant** if **infinite** plane wave
- Stationary asymptotically
- Phase speed: 1.01*c* < *E*/*B* < 1.3*c*

- Decelerate flow by energising transversely
- Drift speed $\approx 0.96c$ for x < 80 even as $p_x \uparrow$
- Accelerates to 0.98c for $x > 80 \rightarrow$ longitudinal E

 $V \times B$

- Insensitive to antenna frequency
- Sensitive to antenna amplitude

PONDEROMOTIVE SHAPING

MJD-50028.0

 $1855+09 \text{ (rms} = 7.272 \ \mu \text{s}) \text{ post-fit}$