The dynamical effects of self-generated magnetic fields in cosmic-ray-modified shocks

Damiano Caprioli Scuola Normale Superiore – Pisa, Italy

X-ray observations of young SNRs

- Bright narrow rims at the blast wave
- Non-thermal spectra
- Synchrotron radiation by electrons up to 10-100 TeV

Magnetic field amplification (MFA)

- The width of the rims requires $B_{ds} \sim 90-500 \mu G \gg B_0$
 - Völk, Berezhko & Ksenofontov 2005
 - Parizot et al. 2006

SNR	$B_{ds}\left(\muG ight)$	P _{w,ds} (%)
Cas A	250-390	3.2-3.6
Kepler	210-340	2.3-2.5
Tycho	240-530	1.8-3.1
SN1006	90-110	4.0-4.2

- Lower B_{ds} if the thickness of the rims were due to magnetic field damping
 - Pohl et al. 2005

MFA models

Cosmic ray induced Streaming Instability (SI)

- Resonant (standard) Skilling 1975, Bell 1978
- Non-resonant Bell 2004, Amato & Blasi 2008

 Phenomenological models: isotropization of magnetic irregularities with opposite helicities
 Bell & Lucek 2001; Vladimirov, Ellison & Bykov 2007

 Amplification of the magnetic field downstream due to upstream clumpiness and shock corrugation

Giacalone & Jokipii 2007

The SNR paradigm for galactic CR

- 10-20% of SN kinetic energy converted in CR
 - The upstream fluid is slowed down: CR modified shock

Power law spectra

- In modified shocks becomes rather concave
- Energies up to the *knee*
 E_{knee}~3×10⁶ GeV
 achievable only with MFA
 Blasi, Amato, CD 2007

SNR Hydrodynamics

Relative positions of forward shock and contact discontinuity

- **Tycho**, Warren et al. 2005;
- **SN 1006**, Cassam-Chenaï et al. 2007.

Multiwavelength analysis

Berezhko & Voelk 2004 and following;

 $ightarrow
m R_{tot} \sim 6-10$

- Barely consistent with predictions of $R_{tot} \propto M_0^{3/4} \approx 10-100$
 - Berezhko & Ellison 1999; Amato & Blasi 2006
- Non-adiabatic heating in the precursor?
 - Alfvén heating: McKenzie & Völk 1982
 - Acoustic instability: Wagner et al. 2007

The dynamical feedback of MFA

- Three-fluid model (plasma-cosmic rays-magnetic field)
 - Resonant Alfvén waves excited by standard SI
 - At the subshock:
 - Wave reflection and trasmission; Scholer-Belcher 1971
 - Magnetized jump conditions; Vainio-Schlickeiser 1999
- Conservation of mass, momentum and energy lead to

$$R_{tot}^{\gamma+1} = \frac{M_0^2 R_{sub}^{\gamma}}{2} \left[\frac{\gamma + 1 - R_{sub}(\gamma - 1)}{1 + \Lambda_B} \right]$$

which is the standard one a part from the factor Λ_B

$$\Lambda_B = W \left[1 + R_{sub} \left(2/\gamma - 1 \right) \right]$$

$$W = P_{w1}/P_1$$

Ratio between magnetic and plasma pressure upstream Krakow 2008

CD et al. 2008, ApJL

Magnetization of SNRs

- Normalized magnetic pressure downstream
 P_{w,ds}~ 2 4%
 imply at least W ≥ 0.3
 Typically W~1-100
- The magnetic field can not be neglected!
- Relevant reduction of R_{tot}
- The effect is driven by:

$$W = \frac{\alpha_1}{P_1} = \frac{\gamma}{4} \frac{M_0^2}{M_{A0}} \left(\frac{R_{sub}}{R_{tot}}\right)^{\gamma - 3/2} \left[1 - \left(\frac{R_{sub}}{R_{tot}}\right)^2\right] \propto \frac{u_0 B_0}{\sqrt{\rho_0} T_0}$$

Krakow 2008

The kinetic calculation

$B_0 = 10 \mu G$; Age of SNR=1000yr

DC et al., sbt. to MNRAS

$T_0(\mathbf{K})$	Λ_B	ξ_1	$p_{max}(10^6 GeV)$	R_{sub}	R_{tot}	$B_2(\mu G)$	$T_2(10^6{\rm K})$
$10^4 \\ 10^4$	No Yes	$0.97 \\ 0.58$	$\begin{array}{c} 0.24 \\ 1.17 \end{array}$	$3.58 \\ 3.84$	$\begin{array}{c} 112.1 \\ 9.22 \end{array}$	$645.8 \\ 463.9$	$\begin{array}{c} 0.88\\ 126.5\end{array}$
$\frac{10^{6}}{10^{6}}$	No Yes	$\begin{array}{c} 0.77 \\ 0.54 \end{array}$	$\begin{array}{c} 0.59 \\ 1.14 \end{array}$	$3.76 \\ 3.84$	$\begin{array}{c} 16.6 \\ 8.44 \end{array}$	$235.0 \\ 425.1$	$42.3 \\ 154.8$

Bohm diffusion in the self-generated magentic field

Krakow 2008

Turbulent (Alfvén) Heating

Often invoked in order to smooth the precursor, BUT it:

- Is relevant only if V_{sh} << 4000 T₅^{1/2} km/s; Völk & McKenzie 1981; Ptuskin & Zirakasvhili 2005
- Cannot be too efficient, otherwise no MFA
- Has no severe effects on the precursor; DC et al. 2008; Vladimirov, Bykov & Ellison 2008

$$R_{tot}^{\gamma+1} = \frac{M_0^2 R_{sub}^{\gamma}}{2} \left[\frac{\gamma + 1 - R_{sub}(\gamma - 1)}{(1 + \Lambda_B)(1 + \Lambda_{TH})} \right] \Lambda_{TH} = \zeta(\gamma - 1) \frac{M_0^2}{M_A} \left[1 - \left(\frac{R_{sub}}{R_{tot}}\right)^{\gamma} \right]$$

DC et al. 2008, sbt. to MNRAS

 $\zeta < 1$

ζ	ξ_1	$p_{max}(10^6 GeV)$	R_{sub}	R_{tot}	B_1/B_0	W	$B_2(\mu G)$	$T_2(10^6 \mathrm{K})$
0	0.60	1.17	3.76 2.65	9.52	25.3	1.941	475.6	114.6
0.5 0.8	0.66	$\begin{array}{c} 0.84 \\ 0.53 \end{array}$	$3.65 \\ 3.68$	10.96 10.76	12.8	$0.390 \\ 0.115$	379.6 232.5	132.0 128.3
0.99	0.55	0.12	3.85	8.69	2.26	0.005	43.5	162.2

 $B_0 = 10 \mu G$; Age=1000yr; $T_0 = 10^5 K$

Krakow 2008

Conclusions

- The magnetic feedback is always relevant for young SNRs
- The inclusion of the amplified magnetic field provides
 - > A smoothening of the precursor ($R_{tot} \sim 6-10$)
 - > Mildly-concave spectra ($\propto p^{-3.5}$ at highest momenta)
 - Higher p_{max}
 - No dependence on M₀
 - Higher temperature and pressure downstream
 - No need for turbulent heating
- The details can be analytically worked out only for resonant SI
 - Need for a theory of non-resonant turbulence
 - CR transport equation / pressure and energy densities