PIC Simulations of relativistic transverse magnetosonic shocks

Elena Amato

INAF-Osservatorio Astrofisico di Arcetri

In collaboration with Jonathan Arons (Berkeley)

Outline

- Astrophysical relevance of the subject
- PIC simulations of relativistic transverse magnetosonic shocks in e⁻-e⁺-p plasmas
 - Resonant cyclotron absorption
 - Questions left open by previous work on the subject
 - What can still be learned from 1D PIC
- Simulations with increased mass-ratio
 between ions and pairs (up to 100): now outdated
 - Acceleration mechanism still effective
 - Electron acceleration seen for the first time
 - Effects of finite temperature of the plasma
- Summary and Conclusions

Relativistic shocks in astrophysics

Properties of the flow and particle acceleration

- These shocks are collisionless: transition between non-radiative (upstream) and radiative (downstream) takes place on scales too small for collisions to play a role
- They are generally associated with non-thermal particle acceleration but with a variety of spectra and acceleration efficiencies

Self-generated electromagnetic turbulence mediates the shock transition: it must provide both the dissipation and particle acceleration mechanism

The detailed physics and the outcome of the process strongly depend on composition (e⁻-e⁺-p?) magnetization (σ =B²/4 π n Γ mc²) and geometry ($\Gamma \times \Theta(\mathbf{B} \cdot \mathbf{n})$) of the flow, which are usually unknown....

Synchrotron Emission maps from 2D MHD simulations of PWNe

Particle In Cell Simulations

Leading edge of the shock Configuration at the leading edge ~ cold ring in momentum space 40 B_{z1} 20 20 B_{z2} ď ų u_{x1} -20-20-40-40-20 -60-400 20 40 -60-40-200 20 40 upstream downstream \mathbf{u}_{r} u, electrons positrons Magnetic reflection mediates Coherent gyration leads to the transition collective emission of cyclotron waves Drifting e⁺-e⁻-p **B** increases plasma Pairs thermalize to $kT \sim m_{\rho}\Gamma c^{2}$ over Bz $10-100 \times (1/\Omega_{ce})$ incoming outgoing \P_x Ions take their time: $\mathbf{E}_{\mathbf{y}} = \mathbf{B}_{\mathbf{1}} \boldsymbol{\beta}_{\mathbf{1}}$ m_i/m_e times longer х Pairs can absorb ion Plasma starts radiation resonantly gyrating reflected

Particle spectra and acceleration efficiency for $m_i/m_e = 100$

Summary and Conclusions

We have explored the physics of relativistic transverse magnetosonic shocks in ion-doped plasmas through 1D PIC simulations: still about the only possibility to explore the behaviour of the system for large m_i/m_e

Aims:

 Checking whether RCA would still provide any particle acceleration
 Checking whether any electron acceleration for larger mass-ratios (upstream plasma closer to quasi-neutrality)

Results:

Pairs are efficiently accelerated even for m_i/m_e=100 if U_i/U_{tot}>0.5
 Electron acceleration finally seen!!!

 Less efficient than for positrons due to elliptical polarization of the waves (forced by low m_i/m_e which implies large n_i/n_e to ensure U_i/U_{tot}>0.5)
 Extrapolation to realistic m_i/m_e predicts same efficiency for accelerating e⁺ and e⁻

- Efficiencies and spectra as observed in PWNe can be obtained depending on ion fraction
- The acceleration is effectively suppressed if initial thermal spread larger than m_e/m_i