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MOTIVATION

I Helicity conservation imposes constraints on dynamo
action and one can study the minimal field strength of the
large scale magnetic field that could arise as a result.

I As a first step, we have analytically build a galactic disk
dynamo model in presence of a force-free corona and
study its steady-state solutions.

I We develop a formalism for obtaining time-dependent
solutions that are expressed in terms of these steady-state
solutions.
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AXISYMMETRIC DYNAMO EQUATION
Assumptions

1. Axisymmetry in U and B
2. α is independent of time
3. α− ω dynamo is operative

The dynamo equation :

∂B̄
∂t

= ∇× (Ū× B̄) + αB̄ + (η + ηT)∇2B̄. (1)

Express B as a combination of poloidal flux ψ and poloidal
current function T as (Mangalam & Subramanian 1994)

BP = Brr̂ + Bzẑ =
1
r
∇ψ × φ̂ = P̂ψ (2)

Bφ =
T
r
φ̂ (3)
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DYNAMO EQUATIONS

The dynamo equation expressed in terms of ψ and T now
reduces to (

∂

∂t
− ηΛ

)
ψ = αT (4)(

∂

∂t
− ηΛ

)
T = −r

dω
dr

∂ψ

∂z
(5)

where Λ ≡ r2∇ ·
(∇

r2

)
r. Adapting Pudritz (1981) for radial

dependence of α and η due to shear induced turbulence to the
case of galaxies (Mangalam & Subramanian, 1994, Sellwood &

Balbus, 1999), we write η =
M2h2v0

r
and α =

M2hv0

r
. Here M is

the Mach number, h is the half-disc height and v0 = rω velocity
of the disc.
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DYNAMO EQUATIONS

We now introduce the following dimensionless numbers:

Rα =
αh
η

, Rω =
h2ω

η
and D = RαRω =

αh3ω

r2 .

And rescale the variables as
r = r̃h, z = z̃h, T = T̃/h, t = t̃/τ and Λ = Λ̃/h2. Dropping the
tilde, we can rewrite the dynamo equation in a more compact
and symmetric manner as(

∂

∂t
− ηΛ

)
ψ = RαT (6)(

∂

∂t
− ηΛ

)
T = Rω

∂ψ

∂z
. (7)
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SEPARATION OF VARIABLES

We look for separable solution of the form

ψ(r, z) =

N∑
n=1

Qn(r)an(z) exp Γt, T(r, z) =

N∑
n=1

Qn(r)bn(z) exp Γt

(8)
Separation of variables leads to the following set of differential
equations

rΓQ(r) +
1
r

dQ(r)
dr

− d2Q(r)
dr2 = γQ(r) (9)

d2a(z)

dz2 + Rαα(z)b(z) = γa(z)

d2b(z)

dz2 + Rω
da(z)

dz
= γb(z) (10)
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The radial solutions are given by

Qn(r) = rJ1(
√
γnr) (11)

with the boundary condition that
√
γnR is the nth Bessel zero at

the boundary r = R. The equations for a(z) and b(z) can be
coupled into the following fourth order equation

d4a
dz4 − 2γn

d2a
dz2 −D

da
dz

+ γ2
na = 0 (12)

which has to be solved numerically as an eigenvalue problem.
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CORONAL FIELDS
The dynamo generated fields are matched to a force-free corona
at the boundary of the galaxy. The generic form of the coronal
linear force-free field is given by (Mangalam & Subramanian
1994)

∇× Bc = µBc; ∇ · Bc = 0 (13)

where µ is the force-free parameter. The general solution to the
above equations are given by

ψc(r, z) =

N∑
n=1

enJ1(
√
γnr) exp(−

√
γn − µ2|z|) (14)

Tc(r, z) =

N∑
n=1

µenJ1(
√
γnr) exp(−

√
γn − µ2|z|) (15)

where the coefficients en are determined from the boundary
conditions.
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BOUNDARY CONDITIONS

We use the following boundary conditions at the disk surface
(z = 1)

ψ[1] = 0,
[
∂ψ

∂z

]
(1) = 0, bn(1) = µan(1) (16)

where the brackets indicate continuity of the fields. The
equatorial boundary conditions depend on the symmetry of the
solutions and are given as

I quadrupolar conditions: ψ(0) = 0,
[
∂T
∂z

]
(0) = 0

I dipolar conditions:
[
∂ψ

∂z

]
(0) = 0, T(0) = 0.
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RESULTS

Figure : Top: Variation of α with height and a plot depicting the
critical dynamo number. Bottom: Variation of poloidal current
function T and Poloidal stream function ψ with height.
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Figure : Meridional cross-sections of poloidal stream function ψ and
poloidal current T as functions of r and z.
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EXPANSION IN STEADY-STATE SOLUTIONS

In order to solve the time-dependent equations, we expand ψ
and T as a linear combination of the Steady-state solutions with
time dependent coefficients as

ψ(r, z, t) =

N∑
n=1

dn(t)Qs
n(r)an(z) (17)

T(r, z, t) =

N∑
n=1

dn(t)Qs
n(r)bn(z) (18)

where Qs
n(r) is the steady-state radial solutions. an(z) and bn(z)

implicitly depend on time through α and µ.
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DYNAMO EQUATIONS

The radial part of the dynamo equation can now be expressed
as

N∑
n=1

r
ḋn(t)

dn
− λrQs

n(r)
Qs

n(r)
=

N∑
n=1

γn, (19)

where λr is the r part of the operator Λ. This can be simplified
to

〈Js
m|rJs

n〉ḋn − 〈Js
m|Js

n〉(γn − γs
n)dn = 0 (20)

where we have

〈Js
m|rJs

n〉 =

∫ R

0
rJs

mJs
ndr = δmn

R2

2
J2
2(
√
γnR). (21)
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DYNAMICAL QUENCHING

The effect of the small-scale magnetic fields on the α effect can
be described by writing (Shukurov et al. 2006, Sur et. al. 2007)

α = αk + αm (22)

αk =
−1
3
τU · ∇ ×U; αm =

1
3ρ
τ j · b (23)

Here ρ is the fluid density and τ the correlation time of the
turbulent velocity field. We further use the scaling relations
and express α in terms of the small-scale helicity density:

j · b = k2
f a · b; αm =

1
3
τ

k2
f a · b
ρ

. (24)
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TIME DEPENDENCE OF αm

Introducing a reference magnetic field strength and defining a
magnetic Reynolds number as

B2
eq = ρū2, Rm =

ηT

η
(25)

we can rewrite the small-scale helicity transport equation in
terms of the time derivative of α as

dαm

dt
= −2ηTk2

f

(
α〈B̄2〉 − ηT〈J̄ · B̄〉

B2
eq

+
αm

Rm

)
(26)

where αk is a constant and Rm =
ηT

η
.
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MAGNETIC HELICITY IN CYLINDRICAL GEOMETRY
Magnetic Helicity is a measure of links between field lines.

H = − 1
4π

∫ ∫
B(x) · r

r3 × B(x′)d3xd3x′ =

∫
A · Bd3x (27)

The absolute helicity (Low 2006, 2011), is a gauge invariant
flux-weighted sum of the writhe of that axial flux and its
mutual linkage with the circulating flux which is conserved
under condition of perfect electrical conductivity.

B = Bψ + Bφ
Bψ = ∇× φẑ; Bψ = ∇×∇× ψẑ

then the absolute helicity is

Habs(ψ, φ) = (∇× ψẑ) · [∇× (∇× ψẑ) + 2(∇× φẑ)]. (28)

In our axisymmetric case, the above expression reduces to

Habs = 〈2ψT
r2 〉 (29)
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HELICITY CONSTRAINT EQUATION

The total magnetic helicity of the galactic disk + corona is
conserved at any given time. This can be expressed as

Hd(t) + hd(t) + Hc(t) = H0. (30)

The small scale helicity can be written in terms of α as

〈hd〉 =
B2

eq

k2
f

αm
ηT
. Also, since for force-free fields ψc = µTc, the

helicity constraint equation can now be written as

〈2ψdTd

r2 〉+ 〈
B2

eq

k2
f

αm

ηT
〉+ 〈2µψc

r2 〉 = H0. (31)
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MAGNETIC HELICITY DISSIPATION

In a medium with finite resistivity, the rate of change of
magnetic helicity can be calculated for small scale and large
scale helicity as (Mangalam 2008)

〈dHd

dt
〉 = −2

〈
ηJ · B

〉
+
〈
2εT · B̄

〉
+

[
dHd

dt

]
s

(32)

〈dhd

dt
〉 = −2

〈
ηj · b

〉
−
〈
2εT · B̄

〉
+

[
dhd

dt

]
s

(33)

The helicity transprt terms are included through the change in
helicity of the corona:

(dhd/dt)s + (dHd/dt)s = −dHc/dt (34)

where the overall balance is expressed by the parameter µ of
the corona used in the helicity.
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COMPLETE TIME DEPENDENT FORMULATION

The complete set of equations to be solved simultaneously for
the time-dependent problem can thus be listed as

1.
〈Js

m|rJs
n〉ḋn = 〈Js

m|Js
n〉(γn − γs

n)dn

2.
dαm

dt
= −2ηTk2

f

(
α〈B̄2〉 − ηT〈J̄ · B̄〉

B2
eq

+
αm

Rm

)
3.

〈dHc

dt
〉 = 2

ηT

Rm

(
〈J̄ · B̄〉+

B2
eq

ηT
αm

)
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PRELIMINARY RESULTS
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Figure : Variation of total energy and αm with time.
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PRELIMINARY RESULTS
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Figure : a. Parametric plot of total energy and αm as a function of
time. b. evolution of helicity in the disk and corona with time
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SUMMARY AND CONCLUSIONS
I We have obtained steady-state solutions to the kinematic

dynamo equations for the galactic magnetic field which are
matched to a force-free corona outside the galactic disc. A
critical dynamo number of Dc ≈ 8.26, was found for the
steady state solution.

I It is shown that the absolute helicity may calculated in
cylindrical geometry using habs =

∫ ψT
r2 d3x using the

prescription given in Low (2011).
I We have also developed a time-dependent formalism for

the evolution of the magnetic field in which the disk
dynamo is allowed to operate by transferring the magnetic
helicity from the disk to the corona through a relaxation or
a flux transport process.

I A preliminary study of the time-dependent solutions
shows that the helicity conservation leads to suppression
of α effect and leads to quenching of the dynamo.
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FUTURE WORK

I To add flux terms in the helicity transport equation and
study its effect on dynamo growth.

I To study the dependence of the saturated value and
structure of the final field on the parameters α and µ.

I To incorporate the turbulence spectrum in the initial
conditions for the expansion coefficients dn.
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FLUX PROPORTIONAL TO CORONAL HELICITY

We make the assumption that the helicity transport term is

proportional to the helicity in the corona, i.e.
[

dh
dt

]
S

= k
ηTk2

f

B2
eq

Hc,

where k is a constant and transfers has equal and opposite sign
for large and small scales similar to εT · B̄. Then we have the
following equations

〈Js
m|rJs

n〉ḋn = 〈Js
m|Js

n〉(γn − γs
n)dn

dαm

dt
= −2ηTk2

f

(
α〈B̄2〉 − ηT〈J̄ · B̄〉

B2
eq

+
αm

Rm

)
+ k

ηTk2
f

B2
eq

Hc

〈dHc

dt
〉 = 2

ηT

Rm

(
〈J̄ · B̄〉+

B2
eq

ηT
αm

)



BACKGROUND STEADY-STATE TIME DEPENDENT

PRELIMINARY RESULTS (WITH HELICITY FLUX)
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Figure : Variation of total energy and αm with time.
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PRELIMINARY RESULTS (WITH HELICITY FLUX)
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Figure : a. Parametric plot of total energy and αm as a function of
time. b. Evolution of the total helicity in the disk and corona with
time
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