Helical magnetic fields and Faraday depolarization

Cathy Horellou Onsala Space Observatory, Chalmers University of Technology Onsala, Sweden

> *Andrew Fletcher* Newcastle University, U.K.

• Based on paper by Horellou & Fletcher 2014 MNRAS, about single helical fields

• See also Brandenburg & Stepanov, 2014 ApJ, about bi-helical fields

• Use of numerical MHD simulations (work with A. Brandenburg and R. Stepanov, in prep)

Magnetic helicity: a subtle quantity with profound implications

- In the Mean-Field Dynamo theory, kinetic helicity is crucial to amplify weak B's.
- Magnetic helicity plays an important role in quenching the dynamo and setting the level at which it saturates (final *B* strength) (Brandenburg & Subramanian 2005, Phys. Report).
- Issue of **primordial B's**. A primordial helicity affects the evolution and growth of *B*.
 - Implication for early Universe physics, particle physics, Charge conjugation-Parity violation.
 Helical B's generated at the EW phase transition? (Durrer & Neronov 2013 A&A Rev)
- **Astrophysics**: Helical *B*'s in the Sun (Zhang+ 2014 ApJL) and young stellar objects (Chrysostomou+ 2007, Nature); in loops and arcs near the Galactic Center (Yusef-Zadeh & Morris, 1987 ApJ); in extragalactic radio jets (Gabuzda+ 2014, MNRAS; Molina+ 2014, A&A), nuclear outflows in starburst galaxies (NGC 253, Heesen+ 2011, A&A); nearby spiral galaxies (NGC 6946, Beck+ 2007 A&A); M31's synchrotron torus (Urbanik+ 1994, A&A); intracluster medium or intergalactic medium?
- Tests of Magnetic helicity based on RM gradients parallel to synchrotron polarization (Junklewitz & Ensslin 2011, A&A, Oppermann+ 2011, A&A)
- Magnetic helicity affects the emerging polarization it mostly depolarizes, but can also re-polarize ("inverse depolarization", increase of %pol with lambda; Sokoloff et al. 1998 MNRAS; Horellou & Fletcher 2014, MNRAS; Brandenburg & Stepanov 2014, ApJ)

The complex polarized intensity

$$P(\lambda^{2}) = \int_{0}^{\infty} \varepsilon(x) e^{2i\chi(x)} e^{2i\phi(x)\lambda^{2}} dx$$

Synchrotron *Intrinsic* Faraday
emissivity PA rotation
$$\varepsilon(x) = n_{c}(x) |B_{\perp}(x)|^{1+\alpha}$$

The Faraday dispersion function

Decomposition of the complex polarization in Faraday depth space Observed cpolarization Intrinsic cpolarization Faraday rotation $P(\lambda^2) = \int_{-\infty}^{+\infty} F(\phi) e^{2i\phi\lambda^2} d\phi.$

P(λ^2) is simply the inverse Fourier Transform of *F*(ϕ)

$$P(\lambda^2) = \int_{-\infty}^{+\infty} F(\phi) e^{2i\phi\lambda^2} d\phi.$$
$$F(\phi) = \frac{1}{\pi} \int_{-\infty}^{+\infty} P(\lambda^2) e^{-2i\phi\lambda^2} d\lambda^2.$$

RM synthesis (Brentjens & de Bruyn 2005): reconstruct $F(\phi)$ from observed $P(\lambda_{i})$. Inversion problem. Issue of negative λ^2

> There is a Fourier relation between $P(\lambda^2)$ and $F(\phi)$. The intrinsic polarization angle ψ_0 may depend on ϕ .

$$F(\phi) = |F(\phi)|e^{2i\psi_0(\phi)}$$

Parametrization of the PA as a 1st-order polynomial

 $\psi_0 = \psi_0(\phi) = \alpha + \beta \phi$ [rad] [rad] [rad] [m²] [rad/m²] $\alpha = 0 \text{ rad}$ $\beta = 0, \pm 0.2 \text{ m}^2$

A simple model of the Faraday dispersion function: a uniform slab

Parametrization of the PA as a 1st-order polynomial

$$B = \begin{pmatrix} B_{\perp} \cos(\alpha + k_{H}z) \\ B_{\perp} \sin(\alpha + k_{H}z) \\ B_{\parallel} \end{pmatrix}$$

$$Helicity \ parameter$$

$$\psi_{0} = \alpha + k_{H}z = \alpha + \beta\phi, \qquad (16)$$
where
$$\beta > 0 : \text{Helicity and } B_{\parallel} \text{ have same sign} \rightarrow \text{more depolarization}$$

$$\beta = \frac{k_{H}}{0.81n_{e}B_{\parallel}} \qquad \beta < 0 : \text{Helicity and } B_{\parallel} \text{ have opposite sign} \rightarrow \text{less depolarization}$$

$$= 0.086 \text{ m}^{2} \left(\frac{k_{H}}{2\pi \text{ rad kpc}^{-1}}\right) \left(\frac{0.03 \text{ cm}^{-3}}{n_{e}}\right) \left(\frac{3 \mu \text{G}}{B_{\parallel}}\right). \qquad (17)$$
For an helical field with $k_{H} \simeq 2\pi \text{ rad kpc}^{-1}$, we have $\beta \simeq$

 0.1 m^2 .

$$P(\lambda^2; \mathbf{p}) = 2\phi_{\mathrm{m}} F_0 \operatorname{sinc}[2\phi_{\mathrm{m}}(\lambda^2 + \beta)] e^{2\mathrm{i}\psi(\lambda^2; \mathbf{p})}$$

where

$$\psi(\lambda^2; \mathbf{p}) = \alpha + (\lambda^2 + \beta)\phi_0$$

Fisher analysis: To estimate the *precision* that can be achieved on model parameters & the covariance matrix for a certain data set.

$$\mathcal{F}_{jk} = -\frac{\partial^2 \ln \mathcal{L}}{\partial p_j \partial p_k} = \frac{1}{2} \frac{\partial^2 \chi^2}{\partial p_j \partial p_k}$$

Model of the Faraday dispersion function: Top-hat or Gaussian. *Data: Q* and *U* at different wavelengths (as in Table).

$$\chi^{2} = \sum_{i=1}^{N} \left(\frac{Q_{i} - Q_{\text{mod}}(\lambda_{i}; p_{1}, \dots, p_{P})}{\sigma_{i}} \right)^{2} + \left(\frac{U_{i} - U_{\text{mod}}(\lambda_{i}; p_{1}, \dots, p_{P})}{\sigma_{i}} \right)^{2}.$$
(7)

The Fisher matrix elements can be written as

$$\mathcal{F}_{jk} = \sum_{i=1}^{N} \frac{1}{\sigma_i^2} \left(\frac{\partial Q_{\text{mod}}(\lambda_i^2; p_1, \dots, p_P)}{\partial p_j} \frac{\partial Q_{\text{mod}}(\lambda_i^2; p_1, \dots, p_P)}{\partial p_k} + \frac{\partial U_{\text{mod}}(\lambda_i^2; p_1, \dots, p_P)}{\partial p_j} \frac{\partial U_{\text{mod}}(\lambda_i^2; p_1, \dots, p_P)}{\partial p_k} \right).$$
(8)

The covariance matrix is the inverse of the Fisher matrix:

$$\sigma_{jk}^2 = (\mathcal{F}^{-1})_{jk} \,. \tag{9}$$

Instrument	Note	Frequency band [MHz]	Sensitivity [mJy]	Channel width [MHz]	Integration time
JVLA	S-band	2000-4000	0.3	2	10 min
JVLA	L-band	1000-2000	0.6	1	$10 \min$
ASKAP		700 - 1800	2.5	1	$10 \min$
SKA1	Survey	650 - 1670	0.3	1	$10 \min$
SKA1	\mathbf{Mid}	350 - 3050	0.1	1	$10 \min$
SKA1	Low	50 - 350	0.08	1	$10 \min$
GMRT		580 - 640	0.5	1	1 hr
GMRT		305 - 345	3.8	1	1 hr
WSRT	$92 \mathrm{cm}$	310 - 390	3.9	1	1 hr
LOFAR	HBA2	210 - 250	2.6 - 6.0	1	1 hr
LOFAR	HBA1	110-190	1.6	1	1 hr

0

0.1

0.2

0.3

0.4

0.5 $\lambda^2 [m^2]$ 0.6

0.7

0.8

0.9

1

Uncertainty on the β parameter versus β

Including Faraday dispersion attenuates the effect

From top to bottom: σ_{RM} increases from 0 to 10 rad/m² by steps of 2.5

Summary

• Helicity is a fundamental property.

• We have investigated the detectability of a 1st-order polynomial variation of the intrinsic polarization angle with Faraday depth ϕ .

• Combining multifrequency datasets (as ASKAP & GMRT) is a powerful way to increase precision on the derived parameters, before SKA becomes operational.

• Faraday dispersion attenuates the variations and shifts the peak of polarized intensity.

•Surveys will be biased toward sources with negative β -parameters because of the increased depolarization for positive β 's.

• Need to define an estimator to measure magnetic helicity in data (both from simulations and observations).