The Thermal Dust Polarization as Observed with Planck

Presented by J.-Ph. Bernard (IRAP) Toulouse, France

J.P. Bernard, Planck Collaboration, Cracow Poland 2014

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada

Dust Polarization

(just like Synchrotron emission)

Stein 1966, Andersson 2012, Draine & Fraisse 2009, Hoang & Lazarian 2008, Martin 1975, 2007

J.P. Bernard, Planck Collaboration, Cracow Poland 2014 3

Dust Polarization

Dust Polarization

Ground submm measurements (restricted to bright regions) indicate low p values (a few %)
Archeops claimed 10-15% in the plane (2nd Galactic Quadrant)

Data from Ponthieu et al. 2005

... although the two examples shown here (only a few degrees apart on the sky) give opposite filament orientation w.r.t. B field

Similarities:

- Measure direction of the same component of the **B** field
- Same beam and LOS depolarization effects

Differences:

- At 353 GHz, Faraday rotation is totally negligible !
- Planck is all sky and measures all scales : no filtering of I,Q,U like with interferometers
- Dust is distributed in the thin disk of the MW (comparable to neutral HI + molecular)
- Dust polarization mostly insensitive to $|\mathbf{B}|$

How Planck measures polarization

J.P. Bernard, Planck Collaboration, Cracow Poland 2014 8

Planck Intensity maps

The first Planck papers in polarization Published on arXiv since last May

Planck Collaboration Planck intermediate results. XIX. arXiv:astro-ph 1405.0871
 An overview of the polarized thermal emission from Galactic dust
 Planck Collaboration Planck intermediate results. XX. arXiv:astro-ph 1405.0872
 Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence
 Planck Collaboration Planck intermediate results. XXI. arXiv:astro-ph 1405.0873
 Comparison of polarized thermal emission from Galactic dust at 353 GHz with optical interstellar polarization
 Planck Collaboration Planck intermediate results. XXII. arXiv:astro-ph 1405.0873
 Frequency dependence of thermal emission from Galactic dust in intensity and polarization

- Planck Collaboration Planck intermediate results. XXX. arXiv:astro-ph 1409.5738 The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes

- Planck Collaboration Planck intermediate results. XXXII. arXiv:astro-ph 1409.6728 The relative orientation between the magnetic field and structures traced by interstellar dust

- Montier et al. arXiv:astro-ph 1406.6536

Polarization measurements analysis I: Impact of the full covariance matrix on polarization freation and angle measurements

- Montier et al. arXiv:astro-ph 1407.0178

Polarization measurements analysis II: Best estimators of polarization fraction and angle

The Planck Polarization sky

J.P. Bernard, Planck Collaboration, Cracow Poland 2014

Noise and Bias

Montier et al. 2014a, 2014b

J.P. Bernard, Planck Collaboration, Cracow Poland 2014 [2]

Noise and Bias

Montier et al. 2014a, 2014b

J.P. Bernard, Planck Collaboration, Cracow Poland 2014 12

Polarization angle $\psi = 0.5 \times \mathrm{tg}^{-1}(\mathrm{U},\mathrm{Q}),$ rotated 90° B (Bayesian) -2.0 $1.0 \log_{10}(I_{353}/(MJy.sr^{-1}))$ Color: Intensity at 353 GHz

Lines: Direction of magnetic field as projected on the sky. Normalized length.

Uncertainties

maps of SNR on p

30' resolution

- Computed from mean likelihood
- Basically reflect Intensity and sky coverage

	l °	30'	15'
SNR>2	93 %	82 %	61 %
SNR>3	89 %	72 %	48 %
SNR>5	77 %	55 %	33 %
SNR>10	53 %	34 %	19 %

- Work at 1° resolution to lower noise (also 7', 14', 30')

- Smoothed noise cov. matrix using MC simulations

Emission vs Extinction

- Selected 255 stars with:
 - high S/N in both
 - $E(B-V)_s \le 1$ and $W_{co} \le 2 \text{ K km s}^{-1}$
 - similar column densities E(B-V)_s/E(B-V)_v < 1.6
 - similar polarization angles $\Psi_v \sim \Psi_s$ 90

Emission vs Extinction

- Polarization efficiency ratio: $R_{S/V} = (P_S/I_S)/(p_V/\tau_V) = 4.3 \pm 0.2(stat.) \pm 0.4(syst.)$
- R_{S/V} compatible with a range of dust models, not very discriminatory.
- Polarized emission ratio: $R_{P/p} = P_S/p_V = 5.6 \pm 0.2$ (stat.) ± 0.4 (syst.) MJy sr⁻¹
- $R_{P/p}$ higher than model predictions by ~ 2.5.

More theoretical work is needed to understand the implications for dust grain physics.

Planck intermediate results. XXI.

J.P. Bernard, Planck Collaboration, Cracow Poland 2014 17

Synchrotron (30 GHz) vs Dust (353 GHz)

- Polarization fraction:
 - Measurable correlations in-plane
 - Weaker correlations off-plane
- Angles :
 - Around 0° in plane but not well correlated
 - Correlate over some regions (Fan, North Polar Spur)

Synchrotron (30 GHz) vs Dust (353 GHz)

Polarization fraction

- Polarization fraction:
 - Measurable correlations in-plane
 - Weaker correlations off-plane
- Angles :
 - Around 0° in plane but not well correlated
 - Correlate over some regions (Fan, North Polar Spur)

Significant scatter:

Synchrotron and dust not generally trace the same regions of LOS

The Planck data is unique in tracing B field in the dust disk of the MW.

N N N aury tion III IIII II II Example of star forming region -1 \mathbb{N} J.P. Bernard, Planck Collaboration, Cracow Poland 2014

Example of filaments where the magnetic field \perp to filaments

J.P. Bernard, Planck Collaboration, Cracow Poland 2014 21

Example of filaments where the magnetic field follows filaments

111

111

//

/ /

= //

J.P. Bernard, Planck Collaboration, Cracow Poland 2014

/

vendredi 24 octobre 14

Cham-Eil____

30' resolution

B vs matter

Planck intermediate results. XXXII.

J.P. Bernard, Planck Collaboration, Cracow Poland 2014

B vs matter

Magnetic field direction more often aligns with ISM filamentary structures

Planck intermediate results. XXXII.

J.P. Bernard, Planck Collaboration, Cracow Poland 2014

Polarization fraction vs $N_{\rm H}$

$\Delta \psi$ measures polarization direction homogeneity at given spatial scale **Planck intermediate results. XIX.** *J.P. Bernard, Planck Collaboration, Cracow Poland 2014*

27

 $\Delta \psi$ measures polarization direction homogeneity at given spatial scale **Planck intermediate results. XIX.** J.P. Bernard, Planck Collaboration, Cracow Poland 2014

27

Angle Dispersion Function

28

Filamentary (Spaghetti) regions of high polarization rotation (!!)
 Some extend over large areas (must be nearby)
 Planck intermediate results. XIX.

Angle Dispersion Function

Filamentary (Spaghetti) regions of high polarization rotation (!!)
Correlate with low polarization

Planck intermediate results. XIX.

J.P. Bernard, Planck Collaboration, Cracow Poland 2014 29

Angular Structure Function

$\Delta \psi$ Dust 353 GHz

Synchrotron data (Reich 82, Reich & Reich 86) shows similar structures These structures also correspond to low p (depolarization canals) Those are likely due to Faraday rotation (not present at 353 GHz) The structures in the dust and synchrotron $\Delta \Psi$ do not match

Planck intermediate results. XIX.

Bernard J.Ph., ESLAB 2013 30

Angular Structure Function

$\Delta \psi$ Synchrotron 1.4 GHz

Synchrotron data (Reich 82, Reich & Reich 86) shows similar structures These structures also correspond to low p (depolarization canals) Those are likely due to Faraday rotation (not present at 353 GHz) The structures in the dust and synchrotron $\Delta \Psi$ do not match

Planck intermediate results. XIX.

Bernard J.Ph., ESLAB 2013 30

Angle Dispersion Function

Depolarization canals separate contiguous connex regions with homogenous B, but of different directions

Planck intermediate results. XIX.

J.P. Bernard, Planck Collaboration, Cracow Poland 2014

Angle Dispersion Function

Cells separated using $\Delta \psi$ (watershed algorithm)

Depolarization canals separate contiguous connex regions with homogenous B, but of different directions

Planck intermediate results. XIX.

J.P. Bernard, Planck Collaboration, Cracow Poland 2014

Comparison to MHD simulations

- Similar behaviour observed for $\Delta \psi$ in MHD simulations
- MHD $\Delta\psi$ shows similar filamentary structure
- Some differences in absolute $\Delta \psi$ level ...

Planck intermediate results. XX.

J.P. Bernard, Planck Collaboration, Cracow Poland 2014 33

Comparison to MHD simulations

Polarization fraction vs column density

Simulations reproduce well the decrease of p_{max} with $N_{\rm H}$ in the range 10^{21} to 2×10^{22} cm⁻²

Planck intermediate results. XX.

J.P. Bernard, Planck Collaboration, Cracow Poland 2014

Planck and CMB Foreground

Planck intermediate results. XXX.

J.P. Bernard, Planck Collaboration, Cracow Poland 2014 35

Conclusions

- Planck is providing completely new largescale information on dust polarization

- This is revealing both the magnetic field geometry of our galaxy and new properties of dust emission

- Dust has high intrinsic polarization (>20%)
- p decreases with $N_{\rm H}$
- We see depolarization canals, not due to Faradat rotation
- Anticorrelation between p and angle dispertion underlines importance of the field geometry.
- New constraints for dust models.
- The Analysis is only at a start

Data to be released in the fall

J.P. Bernard, Planck Collaboration, Cracow Poland 2014

p vs wavelength

Correlation analysis using I,Q,U at 353 GHz as dust template)

over 39% of the sky. Excluding most free-free, CO, ... contaminated regions

Evidences lower p at long wavelengths (unacounted for component ? ferro-magnetic grains ? Carbonaceous grains ?)

New constraints on dust models and/or component separation

Synchrotron vs Dust

- p:
 - Measurable correlations in-plane
 - Weaker correlations off-plane
- Angles :
 - Around 0° in plane but not well correlated

-correlate over some regions (Fan, North Polar Spur)

Significant scatter: Synchrotron and dust not generally trace the same regions of LOS

Synchrotron vs Dust

- Off the plane, weaker signal, more scatter. Little measured correlation except in Q1.
- In angles, two things to note:
 - Correlation in Q1 due to North Polar Spur region
 - Angles still zero off the plane in Fan region. I.e., field remains coherent and parallel to the plane over a large region of that quadrant in both observables.
- Significant scatter otherwise, synchrotron and dust not generally tracing the same fields.

Dust PI with B-field orientation textures

(Image ESA Planck)

(WMAP 23GHz)

Noise and Bias

Montier et al. 2014a, 2014b

J.P. Bernard, Planck Collaboration, Cracow Poland 2014 42