Quasar Main Sequence
The physical driver of Eigenvector 1

3rd Cosmology School, Cracow-2017

Swayamtrupta Panda
Supervisor: Prof. Bożena Czerny
in collaboration with: Marzena Śniegowska, Conor Wildy, Krzysztof Hryniewicz

Nicolaus Copernicus Astronomical Center
&
Center for Theoretical Physics, Polish Academy of Sciences
The aim of the project is "to explain which combination of the natural physical AGN parameters (black hole mass, accretion rate, spin and inclination angle) is responsible for the Quasar Main Sequence in type 1 AGNs"
Motivation

In search for a equally robust scheme for studying the sequencing in quasars - An extension of the Hertzsprung-Russell diagram?

HR-like diagram for Quasars...
Eigenvector 1

- Boroson & Green (1992) found a single parameter which was responsible for most of the dispersion in the observed properties of Type 1 AGNs - the **Eigenvector 1 (EV1)**

- They perform the **Principal Component Analysis (PCA)** with 13 tabulated properties (M_v, log R, α_{ox}, EW $H\beta$, $R\lambda 5007$, $R\lambda 4686$, $R\text{Fe}^{II}$, Peak $\lambda 5007$, $H\beta$ FWHM, $H\beta$ shift, $H\beta$ shape, $H\beta$ asymmetry, and, $M[OIII]$)

PCA Analysis Demo
Anticorrelation between Fe$_{\text{II}}$ − [OIII] ($r = -0.670$)

![Graph showing the anticorrelation between Fe$_{\text{II}}$ and [OIII].](image)

Fig. 2. — Ratio of peak height of [O III] $\lambda 5007$ to that of Hβ plotted against equivalent width of the Fe$_{\text{II}}$ emission between $\lambda 4434$ and $\lambda 4684$. Solid squares are radio-quiet objects, open circles are steep-spectrum radio sources, and open triangles are flat-spectrum radio sources.
Figure: The distribution of the FWHM(\(\text{H}\beta\)) for 20,000 quasars plotted against the EV1. The horizontal axis is the relative Fe II strength (\(R_{\text{Fe}II}\)) and the vertical axis is the broad \(\text{H}\beta\) FWHM. The red contours show the distribution of selected quasar sample (quasar density increasing from outer to inner contours). The points are color-coded by the [OIII] (\(\lambda = 5007\)Å) EW, averaged over all nearby objects in a smoothing box of \(\Delta R_{\text{Fe}} = 0.2\) and \(\Delta \text{FWHM}_{\text{H}\beta} = 1,000\) km/s.
The physical driver of EV1

“We postulate that the true driver of EV1 is the **maximum of the accretion disk temperature**, one that also determines the broad band shape of the quasar continuum emission”
The use of a two-component input spectra is motivated by the fact that the quasar SED is indeed dominated by two physically different spectral components. Most of the quasar radiation comes from the accretion disk and forms the Big Blue Bump (BBB) in the optical-UV. This is parametrized by the mass of the black hole, the accretion rate, spin and the cosine of the inclination angle. The BBB, located around the Lyman edge ($\lambda = 1216$ Å) dominates the optical-UV emission and their total energy output

$$T_{\text{max}} = \left[\frac{3GM\dot{M}}{8\pi\sigma r^3} \left(1 - \sqrt{\frac{R_{\text{in}}}{r}}\right)\right]^{0.25} = 2.034 \times 10^{19} \left(\frac{\dot{M}}{M}\right)^{0.25}$$
To model the AGN full continuum, the SED of a quasar is parametrized by:

1. a low-energy slope of the Big Bump continuum (α_{uv});
2. slope of the X-ray component (α_{x});
3. their corresponding exponential cutoffs;
4. the relative luminosities of these two components (determined by setting the spectral index α_{ox}, that describes the continuum between optical-UV bump and the X-ray peak);
5. incorporating a total bolometric luminosity ($= 10^{45}$ erg s$^{-1}$) of the quasar cloud;
6. the position of the broad line region (R_{BLR}) from the core of the nuclei;
7. the mean hydrogen density (n_{H}) of the cloud (deduced from the ratios of emission lines); and
8. a limiting column density (N_{H}) to define the outer edge of the cloud.
SED Modeling

Figure: An example of the spectral energy distribution of the AGN transmitted continuum and line emission produced by CLOUDY: $T_{\text{eff}} = 3.45 \times 10^4$ K, $\alpha_{\text{ox}} = -1.6$, $\alpha_{\text{uv}} = -0.36$, $\alpha_x = -0.9$, $n_H = 10^{11}$ cm$^{-3}$, $N_H = 10^{24}$ cm$^{-2}$ and $\log(R_{\text{BLR}}) = 17.208$. The two-component power law serves as the incident radiation.
Starting with values of parameters from Bruhweiler and Verner (2008), we produce the intensities of the broad Fe\textsubscript{II} emission lines owing to the corresponding levels of transitions present in CLOUDY 13.04. We calculate the Fe\textsubscript{II} strength, which is the ratio of Fe\textsubscript{II} EW within 4434-4684 Å to broad H\textbeta EW.

As a first test we check the dependence of the change in the T\textsubscript{eff} to R\textsubscript{Fe\textsubscript{II}} at constant values of L\textsubscript{bol}, α\textsubscript{ox}, α\textsubscript{uv}, n\textsubscript{H} and N\textsubscript{H}. We fix the distance to the clouds using the relation by Bentz et. al (2013). The range of Eddington ratio \(\left(\frac{L}{L\text{Edd}} \right) \) for this branch of solutions between 3.45 \times 10^4 K and 5 \times 10^5 K is [0.01244, 2.61247].

\[
\left(\frac{R_{\text{BLR}}}{\text{1 lt-day}} \right) = 10^{\left[1.555 + 0.542 \log \left(\frac{\lambda L\lambda}{10^{44} \text{ erg s}^{-1}} \right) \right]}
\]
Based on the hypothesis, the obtained relation between $R_{Fe\text{II}}$ is heavily affected by the change in the maximum temperature of the BBB-component.

Figure 5: Inter-dependence of the parameters with simple n-degree Bézier curves: $R_{Fe\text{II}} - T_{BBB}$
But the plots from the simulations show that - with increase in the maximum disk temperature, there is a fall in the R_{FeII} (shown by the hyperbolic nature of the plot).

Figure: Different ionizing regions of a cloudlet from the LOC model with plane-parallel geometry.
A step further...

- Our initial assumption considered a fixed bolometric luminosity to construct the SED for the opt-UV component. But the trend for $R_{\text{Fe}\,\text{II}} - T_{\text{BBB}}$ turned out to be exactly opposite!

- We now incorporate a fixed Eddington ratio ($L/L_{\text{Edd}} = 1$) and use observationally fitted equations (Czerny & Hryniewicz 2011; Risaliti & Lusso 2017) to compute the luminosity components and their interdependence.

![Graph showing CLOUDY photoionisation trends of $R_{\text{Fe}\,\text{II}} - T_{\text{BBB}}$.]

Test 1: $n_H = 10$, $N_H = 22$ (M1)
Test 2: $n_H = 11$, $N_H = 24$ (M1)
Test 3: $n_H = 10$, $N_H = 22$ (M2,1E+6)
Test 4: $n_H = 11$, $N_H = 24$ (M2,1E+6)
Test 5: $n_H = 11$, $N_H = 24$ (M2,5E+9)

Figure 7: CLOUDY photoionisation trends of $R_{\text{Fe}\,\text{II}} - T_{\text{BBB}}$
From Observational Standpoint

Using the full-GR treatment following the Novikov-Thorne prescription, we simulated an array of SED curves with simultaneous dependence on spin \((0 \leq a \leq 0.998)\) and accretion rate \((0.01 \leq \dot{m} \leq 10)\). We fitted two observation data (RE J1034+396 (Czerny et al. 2016) and an X-Shooter quasar composite from Selsing et al. 2016) using selected values from these models.

Figure 8: Examples of SEDs with spin-accretion rate modulations under the full-GR modeling (a) \(a=0\), (b) \(a=0.998\)
Fitting the Selsing QC

Figure 9: AGN GR-modeling fit over the XShooter quasar composite (a=0, m=0.2, MBH =5.309E+08Msun)
These models are based on $\alpha_{\text{viscosity}}$ and local Keplerian rotation of the disk, as in Shakura & Sunyaev (1973) so they describe a geometrically thin accretion flow with innermost radius located at ISCO (Innermost Stable Circular Orbit) but they include all GR effects, including the spacetime curvature, so the spectra have to be calculated using ray-tracing method.

![Figure 10: (a) The fit of the a=0 (log M$_{\text{BH}}$=6.55) model to the optical/UV spectrum of RE J1034+396 (Czerny et al. 2016); (b) The least square fit (log M$_{\text{BH}}$=9.65) model to XShooter quasar composite (from Selsing et al. 2016)](image)
A mix of both worlds

Figure 11: Observational data (RE J1034+396 & Selsing QC) plotted on CLOUDY photoionisation trends of R_{FeII} - T_{BBB}

$$R_{FeII} = \frac{EW_{FeII}}{EW_{H\beta}}$$

Test 1: $n_H = 10, N_H = 22$ (M1)
Test 2: $n_H = 11, N_H = 24$ (M1)
Test 3: $n_H = 10, N_H = 22$ (M2,1E+6)
Test 4: $n_H = 11, N_H = 24$ (M2',1E+6)
Test 5: $n_H = 11, N_H = 24$ (M2',5E+9)

Nicolaus Copernicus Astronomical Center & Center for Theoretical Physics, PAN

Quasar Main Sequence

Swayamtrupta Panda

Introduction
Project Goal
Literature
Eigenvector 1
Shen and Ho, 2014
Formulation
Proposition
Input Spectra
SED Modeling
Preliminary Results
SED Modeling, R_{FeII}
$FeII$ and $H\beta$
Single ionized cloud
Observational
Full-GR treatment
Tasks at hand:
Thermal Instability
Constant density doesn’t work here!
Future works (Immediate):

- For the **constant density single cloud**:
 - We need to look more closely the dependence of hydrogen density on the maximum of the disk temperature.
 - We intend to incorporate the microturbulence to whose variation the emission flux is sensitive as suggested in Bruhweiler and Verner (2008).
- We will check the $R_{\text{Fe}^{2+}}$ dependence on other parameters which are used (L_{bol}, α_{ox}, α_{uv}, n_{H} and N_{H}).
- We intend to check the mechanism of the formation of Fe^{2+} and $\text{H} \beta$.
Future works (Subsequent):

- For the **constant density LOC model**, we intend to repeat the formalism and check for discrepancies (if any)
- We will reformulate the simulation with the **constant pressure model**
- We need to find a correspondence between disk maximum temperature and the AGN model of a disk + corona with full GR and more complex geometry, and we have to do statistical studies based on samples with known black hole masses
- We will test our theory for the sources with known SED peak position
Introduction

Project Goal

Literature
- Eigenvector 1
- Shen and Ho, 2014

Formulation
- Proposition
- Input Spectra
- SED Modeling

Preliminary Results
- SED Modeling, $R_{\text{Fe}^{\text{II}}}$
- Fe^{II} and H/β
- Single ionized cloud

Observtional
- Full-GR treatment

Tasks at hand:
- Thermal Instability
- Constant density doesn’t work here!

Nicolaus Copernicus Astronomical Center & Center for Theoretical Physics, PAN
Emissivity plots

Figure: Regions of FeII and Hβ based on constant density approximation: $T = 2.25 \times 10^5$ K
Figure: Regions of Fe\textsubscript{II} and H\beta based on constant density approximation - comparison at three different T_{BBB} values
Thermal Instability

Figure: Schematic drawing of the phase diagram between equilibrium temperature and ionization parameter (Krolik et. al 1981)

\[n_H = \alpha \times T^\beta \]
Constant density doesn’t work here!

Figure: n_H - maximum disk temperature - R_{FeII} dependence

$$n_H = 12123.8045 \times T^{1.4791}$$